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Today
Recurrences
How to solve them:

Substitution method.
Recursion-tree method.
Master method. 
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Recurrences
A recurrence is an equation or inequality 
that describes a function in terms of its 
value on smaller inputs.

E.g. Fibbonacci: Fn=Fn-1+Fn-2.

Methods for solving recurrences:
Substitution method.
Recursion-tree method.
Master method.



4

24-10-06 AA1 4

The Substitution Method
Two steps:

Guess the form of the solution.
Use induction to find the constants and 
prove that the solution works.

Problem: To come up with a good guess.
Use recursion-trees.
Correct the guess.

The name comes from the substitution of the guessed answer for the function 
(solution) when the induction hypothesis is applied for smaller values (in the 
induction proof).
This can be used to establish lower or upper bounds.
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Substitution Method - Example
Upper bound for T(n)=2T(⎣n/2⎦)+n
Guess: T(n)=O(n lgn).
By definition of O(…) we have to prove
T(n)≤cn lgn for some constant c.
Proof (by induction):

Induction hypothesis – prove “next”.
Prove formula for first n – or find first n after 
which the formula holds.
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Substitution Method
Important:

Assume the solution has some form f(k) up to 
some k.
Prove that it has exactly the same form f(n)
for n.

Continue the proof (boundary condition):
Assume T(1)=1 (for simplicity).
T(1)≤c lg1 – fails. T(2)=4≤4 lg2 – works for c 
= 4.
Boundary condition will often give a constraint 
on c.
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Subtleties
What if the guess is almost correct, i.e., it 
looks like it’s working but the induction 
hypothesis is not strong enough?
Trick: Subtract a lower term.
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⎣ ⎦ ⎡ ⎤ 1)2/()2/()( ++= nTnTnT
Guess? O(n)
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1+= cn OOPS
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for b≥1

⎣ ⎦ ⎡ ⎤ 1)2/()2/()( ++= nTnTnT
Guess? O(n) but induction with T(n)≤cn-b.
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Recursion-Tree Method
Each node represents the cost of a single 
sub-problem.
Useful when it describes the running time 
of a divide-and-conquer algorithm.
Used to generate a good guess or as a 
direct proof of a solution to a recurrence.
Example: T(n)=3T(n/4)+Θ(n2).

What does it mean?
Construct recursion tree to obtain a guess.
Use the substitution method for the proof.

?
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cn2

c(n/4)2 c(n/4)2c(n/4)2

c(n/16)2
c(n/16)2 c(n/16)2

c(n/16)2
c(n/16)2 c(n/16)2 c(n/16)2 c(n/16)2

c(n/16)2

T(n/64) T(n/64)T(n/64)



14

24-10-06 AA1 14

2cn

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc

i=0

i=1

i=2

?
T(1)

ninn i
i 4log41

4
=⇔=⇔=

log4n+1 levels

level k has 3k terms

last level: Θ(3log4n)



15

24-10-06 AA1 15

2cn

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc

i=0

i=1

i=2

)(log)3)(log(log)3(log
:3

3log
444

log
4

3loglog

44

44

nn
n

n

n

==

=

2cn

2

16
3 cn

2
24

3 cn
i

⎟
⎠
⎞

⎜
⎝
⎛

Θ(3log4n)…T(1)…

=Cn2+Θ(nlog43)
=O(n2)



16

24-10-06 AA1 16

The Master Method
Apply to recurrences of the form
T(n)=aT(n/b)+f(n)
where a≥1 and b>1 are constants and f(n) 
is asymptotically positive.

Don’t re-invent the wheel every time.
General solved equations for different cases.
Intuition: Compare f(n) to nlogba.

Polynomially larger/smaller (by a factor nε).
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T(n)=aT(n/b)+f(n)
T(n) is typically time to solve problem of 
size n.
An algorithm divides the problem of size n
into a sub-problems of size n/b,
then combines the results, which costs 
f(n).
Note 1: We omit the detail of floor/ceil.
Note 2: All the cases are not covered ⇒
the master method does not solve all 
possible cases.

Understand what this recurrence means.
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The Master Theorem
If for some ε>0 then

If then

If for some ε>0
and if
for some c<1 then

)()( log ε−= abnOnf

)()( log abnnf Θ=

)()( log ε+Ω= abnnf

)()( log abnnT Θ=

)lg)(()( nnfnT Θ=

))(()( nfnT Θ=

)()/( ncfbnaf ≤

f(n) “smaller” than nlogba ⇒

f(n) “same” as nlogba ⇒

f(n) “larger” than nlogba ⇒

regularity condition
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Example
T(n)=9T(n/3)+n.
a=9, b=3, f(n)=n.
Case 1 with ε=1:

We conclude T(n)=Θ(n2).

29loglog 3 nnn ab ==

)()()( 12log −− == nOnOnf ab ε
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Example
T(n)=T(2n/3)+1.
a=1, b=2/3, f(n)=1.
Case 2:

We conclude T(n)=Θ( lgn).

11loglog 2/3 == nn ab

)1()()( log Θ=Θ= abnnf



21

24-10-06 AA1 21

Example
T(n)=3T(n/4)+n lgn.
a=3, b=4, f(n)=n lgn.

Case 3 with ε=0.1 + check regularity:

(c=3/4).
We conclude T(n)=Θ(n lgn).

)( 793.03loglog 4 nOnn ab ==

nnncfnnbnaf
nnnf ab

lg)4/3()()4/lg()4/(3)/(
)()()( 1.0793.0log

=≤=
Ω=Ω= ++ε
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Example
T(n)=2T(n/2)+n lgn.
a=2, b=2, f(n)=n lgn.
Case 3?
Problem: f(n)=n lg(n) not polynomially
larger than n: no ε>0 s.t. n lgn=Ω(n1+ε).
We cannot apply the theorem.

nn ab =log
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Master Theorem: Proof Idea
Proof for a sub-domain (to simplify):
n=1,b,b2,…

Compute the cost with a recursion tree 
(lemma 4.2):
leaves + tree =

Bound the 2nd term with 3 cases (lemma 4.3).
Evaluate the sum asymptotically using lemma 
4.3.
Extend the proof for any n.

∑ −

=
+Θ

1log

0
log )/()( n

j
jja bb bnfan
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Lemma 4.3
Bound the sum term.
Proof not difficult, only technical.

Idea: Use hypothesis, substitute, and compute 
the sum.


