

| Today
 - Recurrences

- How to solve them:
- Substitution method.
- Recursion-tree method.
- Master method.

- Recurrences

- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
- E.g. Fibbonacci: $F_{n}=F_{n-1}+F_{n-2}$.
- Methods for solving recurrences:
- Substitution method.
- Recursion-tree method.
- Master method.

IThe Substitution Method

- Two steps:
- Guess the form of the solution.
- Use induction to find the constants and prove that the solution works.
- Problem: To come up with a good guess.
- Use recursion-trees.
- Correct the guess.

The name comes from the substitution of the guessed answer for the function (solution) when the induction hypothesis is applied for smaller values (in the induction proof).
This can be used to establish lower or upper bounds.

Substitution Method - Example
 Upper bound for $T(n)=2 T(\lfloor n / 2\rfloor)+n$

- Guess: $T(n)=O(n \lg n)$.
- By definition of $O(. .$.$) we have to prove$ $T(n) \leq c n \lg n$ for some constant c.
- Proof (by induction):
- Induction hypothesis - prove "next".
- Prove formula for first n - or find first n after which the formula holds.

$$
\begin{aligned}
T(n) & =2 T(\lfloor n / 2\rfloor)+n \quad \text { substitution } \\
T(n) & \leq 2(c\lfloor n / 2\rfloor \lg (\lfloor n / 2\rfloor))+n \\
? & \leq c n \lg (n / 2)+n \\
& =\text { cnlgn-cn } \lg 2+n \\
& =\text { cnlgn-cn }+n \\
& \leq c n \lg n
\end{aligned}
$$

L Substitution Method

- Important:
- Assume the solution has some form $f(k)$ up to some k.
- Prove that it has exactly the same form $f(n)$ for n .
- Continue the proof (boundary condition):
- Assume $T(1)=1$ (for simplicity).
- $T(1) \leq c \lg 1$ - fails. $T(2)=4 \leq 4 \lg 2-$ works for C $=4$.
- Boundary condition will often give a constraint on c. AA1

LSubtleties

- What if the guess is almost correct, i.e., it looks like it's working but the induction hypothesis is not strong enough?
- Trick: Subtract a lower term.

LRecursion-Tree Method

- Each node represents the cost of a single sub-problem.
- Useful when it describes the running time of a divide-and-conquer algorithm.
- Used to generate a good guess or as a direct proof of a solution to a recurrence.
- Example: $T(n)=3 T(n / 4)+\Theta\left(n^{2}\right)$.
? What does it mean?
- Construct recursion tree to obtain a guess.
- Use the substitution method for the proof.

$$
\begin{aligned}
& i=0 \quad \frac{c n^{2}}{c\left(\frac{n}{4}\right)^{2}} \quad c\left(\frac{n}{4}\right)^{2} \\
& \begin{array}{l}
\mathrm{i}=2 \\
c\left(\frac{n}{4^{i}}\right)^{2} c\left(\frac{n}{4^{i}}\right)^{2} c\left(\frac{n}{4^{i}}\right)^{2} \quad c\left(\frac{n}{4^{i}}\right)^{2} c\left(\frac{n}{4^{i}}\right)^{2} c\left(\frac{n}{4^{i}}\right)^{2} \quad c\left(\frac{n}{4^{i}}\right)^{2} c\left(\frac{n}{4^{i}}\right)^{2} c\left(\frac{n}{4^{i}}\right)^{2}
\end{array} \\
& \frac{n}{4^{i}}=1 \Leftrightarrow n=4^{i} \Leftrightarrow i=\log _{4} n \\
& \log _{4} n+1 \text { levels } \\
& \text { level } k \text { has } 3^{k} \text { terms } \\
& \text { last level: } \Theta\left(3^{\log _{4} n}\right) \\
& \mathrm{T}(1)
\end{aligned}
$$

L The Master Method

- Apply to recurrences of the form
$T(n)=a T(n / b)+f(n)$
where $a \geq 1$ and $b>1$ are constants and $f(n)$ is asymptotically positive.
- Don't re-invent the wheel every time.
- General solved equations for different cases.
- Intuition: Compare $f(n)$ to $n^{\log _{b} \text {. }}$.
- Polynomially larger/smaller (by a factor n^{ε}).

$-T(n)=a T(n / b)+f(n)$

$\boldsymbol{T}(\boldsymbol{n})$ is typically time to solve problem of size n.

- An algorithm divides the problem of size n into a sub-problems of size $\boldsymbol{n} / \boldsymbol{b}$, then combines the results, which costs $f(n)$.
- Note 1: We omit the detail of floor/ceil.
- Note 2: All the cases are not covered \Rightarrow the master method does not solve all possible cases.

Understand what this recurrence means.

LThe Master Theorem

- If $f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)$ for some $\varepsilon>O$ then
$f(n)$ "smaller" than $n^{\log _{b} a} \Rightarrow T(n)=\Theta\left(n^{\log _{b} a}\right)$
- If $f(n)=\Theta\left(n^{\log _{b} a}\right)$ then
$f(n)$ "same" as $n^{\log _{b} a} \Rightarrow \quad T(n)=\Theta(f(n) \lg n)$
- If $f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)$ for some $\varepsilon>0$ and if $a f(n / b) \leq c f(n) \quad$ regularity condition for some $c<1$ then
$f(n)$ "larger" than $n^{\log _{b} a} \Rightarrow T(n)=\Theta(f(n))$

Example

- $T(n)=9 T(n / 3)+n$.
$\mathrm{a}=9, \mathrm{~b}=3, f(n)=n . \quad n^{\log _{b} a}=n^{\log _{3} 9}=n^{2}$
- Case 1 with $\varepsilon=1$:
$f(n)=O\left(n^{\log _{b} a-\varepsilon}\right)=O\left(n^{2-1}\right)$
We conclude $T(n)=\Theta\left(n^{2}\right)$.

Example

- $T(n)=T(2 n / 3)+1$.
$a=1, b=2 / 3, f(n)=1 . \quad n^{\log _{b} a}=n^{\log _{3 / 2} 1}=1$
- Case 2:
$f(n)=\Theta\left(n^{\log _{6} a}\right)=\Theta(1)$
We conclude $T(n)=\theta(\lg n)$.

Example

- $T(n)=3 T(n / 4)+n \lg n$. $a=3, b=4, f(n)=n \lg n$.

$$
n^{\log _{b} a}=n^{\log _{4} 3}=O\left(n^{0.793}\right)
$$

- Case 3 with $\varepsilon=0.1+$ check regularity:
$f(n)=\Omega\left(n^{\log _{b} a+\varepsilon}\right)=\Omega\left(n^{0.793+0.1}\right)$
$a f(n / b)=3(n / 4) \lg (n / 4) \leq c f(n)=(3 / 4) n \lg n$ ($c=3 / 4$).
We conclude $T(n)=\Theta(n \lg n)$.

Example

- $T(n)=2 T(n / 2)+n \lg n$. $a=2, b=2, f(n)=n \lg n . \quad n^{\log _{b} a}=n$
- Case 3?
- Problem: $f(n)=n \lg (n)$ not polynomially larger than n: no $\varepsilon>0$ s.t. $n \lg n=\Omega\left(n^{1+\varepsilon}\right)$. We cannot apply the theorem.

Master Theorem: Proof Idea

- Proof for a sub-domain (to simplify): $n=1, b, b^{2}, \ldots$
- Compute the cost with a recursion tree (lemma 4.2): leaves + tree $=\Theta\left(n^{\log _{b} a}\right)+\sum_{j=0}^{\log _{b} n-1} a^{j} f\left(n / b^{j}\right)$
- Bound the $2^{\text {nd }}$ term with 3 cases (lemma 4.3).
- Evaluate the sum asymptotically using lemma 4.3.
- Extend the proof for any n.

L Lemma 4.3

- Bound the sum term.
- Proof not difficult, only technical.
- Idea: Use hypothesis, substitute, and compute the sum.

