
1

Recurrences

Alexandre David
B2-206

2

24-10-06 AA1 2

Today
Recurrences
How to solve them:

Substitution method.
Recursion-tree method.
Master method.

3

24-10-06 AA1 3

Recurrences
A recurrence is an equation or inequality
that describes a function in terms of its
value on smaller inputs.

E.g. Fibbonacci: Fn=Fn-1+Fn-2.

Methods for solving recurrences:
Substitution method.
Recursion-tree method.
Master method.

4

24-10-06 AA1 4

The Substitution Method
Two steps:

Guess the form of the solution.
Use induction to find the constants and
prove that the solution works.

Problem: To come up with a good guess.
Use recursion-trees.
Correct the guess.

The name comes from the substitution of the guessed answer for the function
(solution) when the induction hypothesis is applied for smaller values (in the
induction proof).
This can be used to establish lower or upper bounds.

5

24-10-06 AA1 5

Substitution Method - Example
Upper bound for T(n)=2T(⎣n/2⎦)+n
Guess: T(n)=O(n lgn).
By definition of O(…) we have to prove
T(n)≤cn lgn for some constant c.
Proof (by induction):

Induction hypothesis – prove “next”.
Prove formula for first n – or find first n after
which the formula holds.

6

24-10-06 AA1 6

for c≥1

⎣ ⎦ ⎣ ⎦ nnncnT +≤))2/lg(2/(2)(

ncn
ncnncn

ncnncn
nncn

lg
lg

2lglg
)2/lg(

≤
+−=

+−=
+≤

substitution⎣ ⎦ nnTnT +=)2/(2)(

?

7

24-10-06 AA1 7

Substitution Method
Important:

Assume the solution has some form f(k) up to
some k.
Prove that it has exactly the same form f(n)
for n.

Continue the proof (boundary condition):
Assume T(1)=1 (for simplicity).
T(1)≤c lg1 – fails. T(2)=4≤4 lg2 – works for c
= 4.
Boundary condition will often give a constraint
on c.

8

24-10-06 AA1 8

Subtleties
What if the guess is almost correct, i.e., it
looks like it’s working but the induction
hypothesis is not strong enough?
Trick: Subtract a lower term.

9

24-10-06 AA1 9

⎣ ⎦ ⎡ ⎤ 1)2/()2/()(++= nTnTnT
Guess? O(n)

⎣ ⎦ ⎡ ⎤ 1)2/()2/()(++≤ ncncnT
1+= cn OOPS

10

24-10-06 AA1 10

for b≥1

⎣ ⎦ ⎡ ⎤ 1)2/()2/()(++= nTnTnT
Guess? O(n) but induction with T(n)≤cn-b.

⎣ ⎦ ⎡ ⎤ 1)2/()2/()(+−+−≤ bncbncnT

bcn
bcn

−≤
+−= 12?

11

24-10-06 AA1 11

Recursion-Tree Method
Each node represents the cost of a single
sub-problem.
Useful when it describes the running time
of a divide-and-conquer algorithm.
Used to generate a good guess or as a
direct proof of a solution to a recurrence.
Example: T(n)=3T(n/4)+Θ(n2).

What does it mean?
Construct recursion tree to obtain a guess.
Use the substitution method for the proof.

?

12

24-10-06 AA1 12

T(n) = cn2

T(n/4) T(n/4) T(n/4)

+

=c(n/4)2

+
T(n/16) T(n/16)T(n/16)

=c(n/4)2 =c(n/4)2

T(n/16) T(n/16)T(n/16)

T(n/16) T(n/16)T(n/16)

+ +

=c(n/16)2

+

T(n/64) T(n/64)T(n/64)

13

24-10-06 AA1 13

cn2

c(n/4)2 c(n/4)2c(n/4)2

c(n/16)2
c(n/16)2 c(n/16)2

c(n/16)2
c(n/16)2 c(n/16)2 c(n/16)2 c(n/16)2

c(n/16)2

T(n/64) T(n/64)T(n/64)

14

24-10-06 AA1 14

2cn

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc

i=0

i=1

i=2

?
T(1)

ninn i
i 4log41

4
=⇔=⇔=

log4n+1 levels

level k has 3k terms

last level: Θ(3log4n)

15

24-10-06 AA1 15

2cn

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛ nc

2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc
2

4
⎟
⎠
⎞

⎜
⎝
⎛

i

nc

i=0

i=1

i=2

)(log)3)(log(log)3(log
:3

3log
444

log
4

3loglog

44

44

nn
n

n

n

==

=

2cn

2

16
3 cn

2
24

3 cn
i

⎟
⎠
⎞

⎜
⎝
⎛

Θ(3log4n)…T(1)…

=Cn2+Θ(nlog43)
=O(n2)

16

24-10-06 AA1 16

The Master Method
Apply to recurrences of the form
T(n)=aT(n/b)+f(n)
where a≥1 and b>1 are constants and f(n)
is asymptotically positive.

Don’t re-invent the wheel every time.
General solved equations for different cases.
Intuition: Compare f(n) to nlogba.

Polynomially larger/smaller (by a factor nε).

17

24-10-06 AA1 17

T(n)=aT(n/b)+f(n)
T(n) is typically time to solve problem of
size n.
An algorithm divides the problem of size n
into a sub-problems of size n/b,
then combines the results, which costs
f(n).
Note 1: We omit the detail of floor/ceil.
Note 2: All the cases are not covered ⇒
the master method does not solve all
possible cases.

Understand what this recurrence means.

18

24-10-06 AA1 18

The Master Theorem
If for some ε>0 then

If then

If for some ε>0
and if
for some c<1 then

)()(log ε−= abnOnf

)()(log abnnf Θ=

)()(log ε+Ω= abnnf

)()(log abnnT Θ=

)lg)(()(nnfnT Θ=

))(()(nfnT Θ=

)()/(ncfbnaf ≤

f(n) “smaller” than nlogba ⇒

f(n) “same” as nlogba ⇒

f(n) “larger” than nlogba ⇒

regularity condition

19

24-10-06 AA1 19

Example
T(n)=9T(n/3)+n.
a=9, b=3, f(n)=n.
Case 1 with ε=1:

We conclude T(n)=Θ(n2).

29loglog 3 nnn ab ==

)()()(12log −− == nOnOnf ab ε

20

24-10-06 AA1 20

Example
T(n)=T(2n/3)+1.
a=1, b=2/3, f(n)=1.
Case 2:

We conclude T(n)=Θ(lgn).

11loglog 2/3 == nn ab

)1()()(log Θ=Θ= abnnf

21

24-10-06 AA1 21

Example
T(n)=3T(n/4)+n lgn.
a=3, b=4, f(n)=n lgn.

Case 3 with ε=0.1 + check regularity:

(c=3/4).
We conclude T(n)=Θ(n lgn).

)(793.03loglog 4 nOnn ab ==

nnncfnnbnaf
nnnf ab

lg)4/3()()4/lg()4/(3)/(
)()()(1.0793.0log

=≤=
Ω=Ω= ++ε

22

24-10-06 AA1 22

Example
T(n)=2T(n/2)+n lgn.
a=2, b=2, f(n)=n lgn.
Case 3?
Problem: f(n)=n lg(n) not polynomially
larger than n: no ε>0 s.t. n lgn=Ω(n1+ε).
We cannot apply the theorem.

nn ab =log

23

24-10-06 AA1 23

Master Theorem: Proof Idea
Proof for a sub-domain (to simplify):
n=1,b,b2,…

Compute the cost with a recursion tree
(lemma 4.2):
leaves + tree =

Bound the 2nd term with 3 cases (lemma 4.3).
Evaluate the sum asymptotically using lemma
4.3.
Extend the proof for any n.

∑ −

=
+Θ

1log

0
log)/()(n

j
jja bb bnfan

24

24-10-06 AA1 24

)(nf

⎟
⎠
⎞

⎜
⎝
⎛

b
nf ⎟

⎠
⎞

⎜
⎝
⎛

b
nf ⎟

⎠
⎞

⎜
⎝
⎛

b
nf

⎟
⎠
⎞

⎜
⎝
⎛

ib
nf ⎟

⎠
⎞

⎜
⎝
⎛

ib
nf ⎟

⎠
⎞

⎜
⎝
⎛

ib
nf ⎟

⎠
⎞

⎜
⎝
⎛

ib
nf⎟

⎠
⎞

⎜
⎝
⎛

ib
nf ⎟

⎠
⎞

⎜
⎝
⎛

ib
nf ⎟

⎠
⎞

⎜
⎝
⎛

ib
nf⎟

⎠
⎞

⎜
⎝
⎛

ib
nf ⎟

⎠
⎞

⎜
⎝
⎛

ib
nf

i=0

i=1

i=2

)(nf

)(naf

⎟
⎠
⎞

⎜
⎝
⎛

i
i

b
nfa

Θ(nlogba)…Θ(1)…

a×

a× a× a×

∑ −

=
+Θ

1log

0
log)/()(n

j
jja bb bnfan

25

24-10-06 AA1 25

Lemma 4.3
Bound the sum term.
Proof not difficult, only technical.

Idea: Use hypothesis, substitute, and compute
the sum.

