

What this lecture is about: Secrets of number encoding, how to hack integers (and floats). ©

LToday

- Representation of numbers - introduction.
- Integer coding.
- Basic arithmetic.
- Hexadecimal notations.
- Endianness.
- IEEE floats.
- Implementation of functions.
- Numerical precision.

Natural/Real Numbers Computer Numbers

- Base 10
- Infinite
- Exact
- Base 2
- Finite
- Rounding - overflow

In this lecture

- How to represent numbers - range, encoding.
- Arithmetic.
- How to use these numbers.

Unit for coding = bit.
Finite number of bits, finite numbers.
Signed/unsigned: similar representations but different interpretations.

```
LExample
    Overflow:
        main() {
        printf("%d\n",200*300*400*500);
        }
        outputs -88490188.
        ??
    - Fix - sort of:
        main() {
        printf("%|lld\n",200LL*300LL*400LL*500LL);
        }
        outputs 12000000000.
        (?) What if I forget LL?

Limits of int32_t: -2^31...2^31-1.

\section*{Example}
- Loss of precision:
\((3.14+1 \mathrm{e} 20)-1 \mathrm{e} 20==0.0\) \(3.14+(1 \mathrm{e} 20-1 \mathrm{e} 20)==3.14\)
? - Test \(x==0.0\) not very useful when solving equations.

\section*{\(\downarrow\) Information Storage}
- Basic unit is the byte (=8 bits).
\begin{tabular}{|l|l|l|}
\hline C-declaration & Typical 32-bit & Compaq Alpha \\
\hline char & 1 & 1 \\
\hline short int & 2 & 2 \\
\hline int & 4 & 4 \\
\hline long int & 4 & 8 \\
\hline char \(*\) & 4 & 8 \\
\hline float & 4 & 4 \\
\hline double & 8 & 8 \\
\hline
\end{tabular}

Size of the different types of integers depends on the architecture. Addressing is limited by the size of pointers that gives the size of addressable memory.

\section*{L Features}
- Limits on addressable memory.
- Size of registers - 32/64.
- Aligned memory allocation (32/64 bits).
- Careful on addressing: main() \{
char a[]="Hello world!";
int *p=\&a[1];
printf("\%d\n", *p);
\}
13-10-06

\section*{Integer Coding}
- Unsigned integers:
\(U B=\sum_{i=0}^{w-1} x_{i} i^{i}\)
- Signed integers: Called 2 complement. \(S B=-x_{w-1} 2^{w-1}+\sum_{i=0}^{w-2} x_{i} 2^{i}\)
w: size of a word (in bits) x : bits (0 or 1)
- Highest bit codes the sign.

\section*{1 Basic Arithmetic}
- Logical operations (bitwise): \&,l,^,~,<<,>>. Example: \(a^{\wedge}=b ; b^{\wedge}=a ; a^{\wedge}=b\);
- Arithmetic operations: \(+-* /\).
- Careful with shifts on signed integers!
- Do not mess up with boolean operations (\&\& II).

\section*{| Properties}
- Operations are the same on signed/unsigned integers.
- Check properties on the notes.
- Operations based on the algebra \(<Z_{n},+_{n} *_{n},-{ }_{n}, 0,1>\). Operations modulo \(n\) and \(-\mathrm{a}=0\) or \(-\mathrm{a}=\mathrm{n}-\mathrm{a}\).

Basic properties:
-commutativity: \(a+b=b+a, ~ a * b=b * a\)
-associativity: \((a+b)+c=a+(b+c),\left(a^{*} b\right)^{*} c=a^{*}\left(b^{*} c\right)\)
-distributivity: \(a^{*}(b+c)=a^{*} b+b^{*} c\)
-ddentities: \(a+0=a, a * 1=a\)
-annihilator: \(a^{*} 0=0\)
-cancellation: -(-a)=a
Properties for integer ring <Z,+, \({ }^{*},-, 0,1>\) and for boolean algebra
\(<\{0,1\}, \mid, \&, \sim, 0,1>\) are similar (| instead of,\(+ \&\) instead of *).
Unique for integer ring: \(\mathrm{a}+-\mathrm{a}=0\).
Unique for boolean algebra:
-distributivity: \(a \mid(b \& c)=a \&(b \mid c)\)
-complement: \(a \mid \sim a=1, a \& \sim a=0\)
-idempotency: \(a \& a=0, a \mid a=a\)
-absorption: \(a \mid(a \& b)=a, a \&(a \mid b)=a\)
-DeMorgan laws: \(\sim(a \& b)=\sim a \mid \sim b, \sim(a \mid b)=\sim a \& \sim b\)

\section*{LShifts \& Masks}
- Read bit n: Use mask ( \(1 \ll \mathrm{n}\) ).
- Set bit \(n\) on int bits[]: ipos = n / 32; imask = 1 << ( \(n\) \% 32); bits[ipos] |= imask;
- Shifts as division/multiplication by powers of 2.
- Shifts for negative numbers has "wrong" rounding.
Correct: \((x<0 ?(x+(1 \ll k)-1): x) \gg k\).



\section*{Block Diagram for A+B, A-B}





\section*{\(\perp\) Arithmetic}
- Machine code of + - * / same for int/uint.
- Integer convertion == type casting.
- Padding for the sign (int).
- Conversion is modulo the size of the new int.
- Beware of implicit conversions in C!
- Optimizations for some operations:
2*a \(==a+a==a \ll 1\)
\(a / 2==a \gg 1\)
\(a^{*} 2^{\wedge} i==x \ll i\)
\(a \% 2^{\wedge} i==a \quad \&((1 \ll i)-1)\)
\(a / 2^{\wedge} i=a \gg i\)
2^i \(==1 \ll i\)

Previous read example for a positive index n :
ipos \(=n \gg 5\);
imask = \(1 \ll(n \& 31)\);
bits[n] |= imask;

\section*{\(\perp\) Notes}
- Beware of precedence of operators:
- if ( \(x\) \& mask == value) WRONG
- if ( (x \& mask) = value) RIGHT
- Test odd numbers: if (x \& 1)
- Careful: unsigned int \(i\); for \((i=0 ; i<n-1 ;++i) \ldots ?\)

\section*{LHexadecimal Notation}
- Learn the first powers of 2.
- Hexadecimal more useful:
- One digit codes 4 bits. 0 ... \(\mathrm{F}=0 . . .15=16\) numbers.
- C notation: 0x...
- Examples:
- 0xa57e=1010 010101111110
\[
10=8+2,5=4+1,7=4+2+1,14=8+4+2
\]
- \(0 x f=1111,0 \times 7=0111,0 \times 3=0011\)

Remember: Individual bits are accessed by shifts and masks.
Ranges:
-uint: 0...0xffffffff
-int: 0x80000000...0x7fffffff
\(0 x f, 0 \times 7,0 \times 3,0 \times 7 f, \ldots\) are strings of consecutive 1 s .
To get the encoding of negative numbers, use \(-\mathrm{a}=\sim \mathrm{a}+1\).

\section*{LEndianness: Beware!}
- "0xa57e" is a notation for humans. Corresponds to "1010 01010111 1110" in base 2.
- Little endian: stored as 0111111010100101.
- Big endian: stored as 1010010101111110.
- Does not matter in C, except for
- bitmap manipulation
- device drivers
- network transfers

\section*{| Testing for endianness}
- Write a value on 32 bits.
- Read 8/16 bits and check what was written.
- Exercise for Sun/Intel.
\begin{tabular}{|c|c|c|}
\hline & & \[
\begin{aligned}
& \text { main( }) \text { \{ } \\
& \text { int }=0 \times f 0000000 ; \\
& \text { char }{ }^{*} c=\& a ; \\
& \text { print }\left(" \% \times \backslash{ }^{\prime \prime}{ }^{\prime \prime},{ }^{*} c\right) \text {; }
\end{aligned}
\] \\
\hline \multicolumn{3}{|l|}{\multirow[t]{2}{*}{- Sun? fffffffo}} \\
\hline & & \\
\hline
\end{tabular}
-endianness
-sign coding
-integer convertion

\section*{Representation of reals}
- How to code a real number with bits?
- Finite precision \(\rightarrow\) approximation.
- Represent very small and very large numbers \(\rightarrow\) density of encoding varies.
- Scientific notation used, e.g. (base 10), 3.141 e 2 - but in base 2 .
- Starter: fractional numbers - bad for large or small numbers.
- Decimal (d): \(\quad d=\sum_{i=-n}^{m} 10^{i} d_{i} \quad b=\sum_{i=-n}^{m} 2^{i} b_{i}\)

\section*{\(\perp\) IEEE floats}
- IEEE floating point standard
- \(\mathrm{V}=(-1)^{\mathrm{S}} \mathrm{M}^{*} 2^{\mathrm{E}}\)
- Number of bits (float/double): s[1], m[23/52], e[8/11].
- Normalized and de-normalized values.
- Bit fields: s, m, e to code respectively S, M, E.
- Normalized values ( \(e \neq 0, \mathrm{e}=111 . .\). )
- E=e-bias (-126...127/-1022...1023).
- \(M=1+m \quad(1 \leq M<2)\)

13-10-06 . Trick for more nrerision imnlied leadina

Bias is used for a smooth transition between normalized and de-normalized numbers. IEEE distinguishes between +0.0 and -0.0 : one more reason to test with a tolerance.
NaN generated for \(\sqrt{ }-1\), inf-inf, \(0 / 0\).

\section*{\(\perp\) IEEE floats}
- De-normalized values (e= 0 or 11...)
- e=0: E=1-bias, bias=2k-1-1
- Coding compensates for M not having an implied leading 1.
- M=m
- For numbers very close to 0 .
- \(\mathrm{e}=11 \ldots\) :
- m=0, (signed infinite)
- m! \(=0, \mathrm{NaN}\).

\section*{LFeatures of IEEE floats}
- \(+0.0==0\) (binary representation \(=00 . .\). ).
- If interpreted as unsigned int, floats can be sorted (+x ascending, -x descending).
- All int values representable by doubles.
? . Not all int values representable by floats.
- round to even (avoid stat. bias)
- round towards 0
- round up
- round down
- can't choose in C.

\section*{- Properties}
- Operations NOT associative.
- Not always inverse (infinity).
- Loss of precision.

Important for compilers and programmers.
- Ex: \(x=a+b+c ; y=b+c+d ;\) Optimize or not?
- Monotonicity \(a \geq b \Rightarrow a+x \geq b+x\)
- Casts:
- int2float rounded, double2float rounded/overflow
- int2double, float2double OK
- float2int, double2int truncated/rounded/overflow.

\section*{IA32: The good and the bad \\ - Good: Uses internally 80 bits extended registers for more precision. \\ - Bad: \\ - Stack based. \\ - Side effects like changing values when loading or saving numbers in memory whereas register transfers are exact. \\ - Extensions: MMX, SSE, Altivec. SIMD instructions = operations working in parallel on multiple data.}

\title{
Implementation - summary \\ - Integers \\ - addition/subtraction simple \\ - multiplication: \(r=0\); while(b) do \(\{\) if ( \(b \& 1\) ) \(r+=a ; a+=a ; b \gg=1 ;\}\) \\ - division iterative
}
- Floats
- addition/subtraction complicated
- check for 0, align significands, add/sub, normalize
- guard bits to avoid losing precision on very close numbers (1.00...*2^1-1.11...2*0)
- multiplication/division principle simpler
- multiply/divide significands, add/sub exponents, detect over/under-flow.

\section*{Complex functions}
- Lagrange
polynomials
- Taylor series
\[
\begin{aligned}
& P_{n}(x)=\sum_{i=0}^{n} f\left(x_{i}\right) \prod_{k=0, k \neq i}^{n} \frac{x-x_{k}}{x_{i}-x_{k}} \\
& f(x)=\sum_{i=0}^{+\infty} f^{(i)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{i}}{i!}
\end{aligned}
\]
- Other numerical methods that converge rapidly.
- Intel:: cos, sin, sqrt, in hardware.
- Special (int): random generator \(x_{i+1}=\left(a x_{i}+c\right) \% m\).
- Simple but correlation between successive values.
- Higher bits better quality than lower bits.

\section*{- Numerical precision}
- Evaluation of precision
- absolute \(\quad x \pm \alpha\)
- relative \(\quad x^{*}(1 \pm \alpha)\)
- Be careful with division by very small values: Can amplify numerical errors.
- Numerical justification for Gauss' method to solve linear equations.
- More in courses on numerical methods.```

