
1

Algorithms & Architecture
Representing and

Manipulating Numbers

Alexandre David
B2-206

What this lecture is about: Secrets of number encoding, how to hack integers
(and floats). ☺

2

13-10-06 AA1 2

Today
� Representation of numbers – introduction.
� Integer coding.
� Basic arithmetic.
� Hexadecimal notations.
� Endianness.
� IEEE floats.
� Implementation of functions.
� Numerical precision.

3

13-10-06 AA1 3

Basics
Natural/Real Numbers
� Base 10
� Infinite
� Exact

Computer Numbers
� Base 2
� Finite
� Rounding - overflow

In this lecture
� How to represent numbers – range, encoding.
� Arithmetic.
� How to use these numbers.

Unit for coding = bit.
Finite number of bits, finite numbers.
Signed/unsigned: similar representations but different interpretations.

4

13-10-06 AA1 4

Questions
� How to code negative numbers?
� How to code real numbers?
� Which kind of precision do we get?

� Small numbers vs. big numbers.

?
?
?

5

13-10-06 AA1 5

Example
� Overflow:

main() {
printf(“%d\n”,200*300*400*500);

}
outputs -88490188.

� Fix – sort of:
main() {

printf(“%lld\n”,200LL*300LL*400LL*500LL);
}
outputs 12000000000.

?

? What if I forget LL?

Limits of int32_t: -2^31…2^31-1.

6

13-10-06 AA1 6

Example
� Loss of precision:

(3.14+1e20)-1e20==0.0
3.14+(1e20-1e20)==3.14

� Test x == 0.0 not very useful when solving
equations.

?

7

13-10-06 AA1 7

Information Storage
� Basic unit is the byte (=8 bits).

88double
44float
84char *
84long int
44int
22short int
11char
Compaq AlphaTypical 32-bitC-declaration

Size of the different types of integers depends on the architecture. Addressing
is limited by the size of pointers that gives the size of addressable memory.

8

13-10-06 AA1 8

Features
� Limits on addressable memory.
� Size of registers – 32/64.
� Aligned memory allocation (32/64 bits).
� Careful on addressing:

main() {
char a[]=“Hello world!”;
int *p=&a[1];
printf(“%d\n”,*p);

}

?

9

13-10-06 AA1 9

Integer Coding
� Unsigned integers:

� Signed integers:
Called 2 complement.

� Highest bit codes the sign.

∑

∑
−

=

−
−

−

=

+−=

=

2

0

1
1

1

0

22

2

w

i

i
i

w
w

w

i

i
i

xxSB

xUB

w: size of a word (in bits)
x: bits (0 or 1)

10

13-10-06 AA1 10

Basic Arithmetic
� Logical operations (bitwise):

&,|,^,~,<<,>>.
Example: a ^= b; b ^= a; a ^= b;

� Arithmetic operations: + - * /.
� Careful with shifts on signed integers!
� Do not mess up with boolean operations

(&&, ||).

?
?

11

13-10-06 AA1 11

Properties
� Operations are the same on

signed/unsigned integers.
� Check properties on the notes.
� Operations based on the algebra

<Zn,+n,*n,-n,0,1>. Operations modulo n
and -a=0 or -a=n-a.

Basic properties:
•commutativity: a+b=b+a, a*b=b*a
•associativity: (a+b)+c=a+(b+c), (a*b)*c=a*(b*c)
•distributivity: a*(b+c)=a*b+b*c
•identities: a+0=a, a*1=a
•annihilator: a*0=0
•cancellation: -(-a)=a
Properties for integer ring <Z,+,*,-,0,1> and for boolean algebra
<{0,1},|,&,~,0,1> are similar (| instead of +, & instead of *).
Unique for integer ring: a+-a=0.
Unique for boolean algebra:
•distributivity: a|(b&c) = a&(b|c)
•complement: a|~a=1, a&~a=0
•idempotency: a&a=0, a|a=a
•absorption: a|(a&b)=a, a&(a|b)=a
•DeMorgan laws: ~(a&b)=~a|~b, ~(a|b)=~a&~b

12

13-10-06 AA1 12

Shifts & Masks
� Read bit n: Use mask (1 << n).
� Set bit n on int bits[]:

ipos = n / 32;
imask = 1 << (n % 32);
bits[ipos] |= imask;

� Shifts as division/multiplication by powers
of 2.

� Shifts for negative numbers has “wrong”
rounding.
Correct: (x<0?(x+(1<<k)-1):x)>>k.

13

13-10-06 AA1 13

How does it work?

1011
+1101
111
11000

1011 multiplicand
*1101 multiplier
1011

0000 partial
1011 products
1011

10001111 productSubtraction?

14

13-10-06 AA1 14

How does it work?

1011 10010011
divisor dividend

10010011/1011=?

0
1011 10010011
1011

00
1011 10010011

1011

000
1011 10010011

1011

0000
1011 10010011

1011

00001
1011 10010011

-1011
001110 partial remainder

1011

1

quotient

15

13-10-06 AA1 15

Block Diagram for A+B, A-B

B Register A Register

2-complementer

switch +/-

Adderoverflow

16

13-10-06 AA1 16

Block Diagram for M*Q

Mn-1 . . . M0

Multiplicand

n-bit adder shift & add logic

Qn-1 . . . Q0

Multiplier

An-1 . . . A0C

add

shift right

C A Q M
0 0000 1101 1011

0 1011 1101 1011 +
0 0101 1110 1011 >>

0 0010 1111 1011 >>

0 1101 1111 1011 +
0 0110 1111 1011 >>

1 0001 1111 1011 +
0 1000 1111 1011 >>

Product in A,Q

17

13-10-06 AA1 17

Flowchart for unsigned *
C,A ← 0
M ← multiplicand
Q ← multiplier
count ← n

Q0=1?

C,A← A+M

right shift C,A,Q
count ← count-1

count=0? product in A,Q

yesno

yesno

18

13-10-06 AA1 18

Flowchart for unsigned /
A ← 0
M ← divisor
Q ← dividend
count ← n

shift left A,Q
A ← A-M

A<0?

Q0 ← 1 Q0 ← 0
A ← A+M

count ← count-1

count=0? quotient in Q
remainder in A

yesno

yesno

19

13-10-06 AA1 19

Arithmetic
� Machine code of + - * / same for int/uint.
� Integer convertion == type casting.

� Padding for the sign (int).
� Conversion is modulo the size of the new int.
� Beware of implicit conversions in C!

� Optimizations for some operations:

2*a == a+a == a<<1 a/2 == a>>1
a*2^i == x << i a/2^i == a>>i
a%2^i == a & ((1<<i)-1) 2^i == 1<<i

Previous read example for a positive index n:
ipos = n >> 5;
imask = 1 << (n & 31);
bits[n] |= imask;

20

13-10-06 AA1 20

Notes
� Beware of precedence of operators:

� if (x & mask == value) WRONG
� if ((x & mask) = value) RIGHT

� Test odd numbers: if (x & 1)
� Careful:

unsigned int i;
for(i = 0; i < n-1; ++i) … ?

21

13-10-06 AA1 21

Hexadecimal Notation
� Learn the first powers of 2.
� Hexadecimal more useful:

� One digit codes 4 bits. 0…F=0…15=16
numbers.

� C notation: 0x…

� Examples:
� 0xa57e=1010 0101 0111 1110

10=8+2,5=4+1,7=4+2+1,14=8+4+2
� 0xf = 1111, 0x7=0111, 0x3=0011

Remember: Individual bits are accessed by shifts and masks.
Ranges:
•uint: 0…0xffffffff
•int: 0x80000000…0x7fffffff

0xf, 0x7, 0x3, 0x7f, … are strings of consecutive 1s.
To get the encoding of negative numbers, use -a=~a+1.

22

13-10-06 AA1 22

Hack
� Allocated memory is 32 bits aligned

� 2 lower bits are = 0.
� Use them to store data.
� But it’s a hack.

23

13-10-06 AA1 23

Endianness: Beware!
� “0xa57e” is a notation for humans.

Corresponds to “1010 0101 0111 1110” in
base 2.
� Little endian: stored as 0111111010100101.
� Big endian: stored as 1010010101111110.

� Does not matter in C, except for
� bitmap manipulation
� device drivers
� network transfers

24

13-10-06 AA1 24

Testing for endianness
� Write a value on 32 bits.

� Read 8/16 bits and check what was written.
� Exercise for Sun/Intel.

� Intel?
� Sun?
� What if a = 0x70000000?

main() {
int a = 0xf0000000;
char *c = &a;
printf(“%x\n”, *c);

}0
fffffff0?

•endianness
•sign coding
•integer convertion

25

13-10-06 AA1 25

Representation of reals
� How to code a real number with bits?

� Finite precision → approximation.
� Represent very small and very large numbers
→ density of encoding varies.

� Scientific notation used, e.g. (base 10),
3.141e2 – but in base 2.

� Starter: fractional numbers – bad for large
or small numbers.
� Decimal (d):
� Binary(b): ∑

−=

=
m

ni
i

i dd 10 ∑
−=

=
m

ni
i

i bb 2

26

13-10-06 AA1 26

IEEE floats
� IEEE floating point standard

� V=(-1)SM*2E

� Number of bits (float/double):
s[1], m[23/52], e[8/11].

� Normalized and de-normalized values.
� Bit fields: s, m, e to code respectively S, M, E.

� Normalized values (e≠0, e≠111…)
� E=e-bias (-126…127/-1022…1023).
� M=1+m (1≤M<2)
� Trick for more precision: implied leading 1

Bias is used for a smooth transition between normalized and de-normalized
numbers. IEEE distinguishes between +0.0 and -0.0: one more reason to test
with a tolerance.
NaN generated for √-1, inf-inf, 0/0.

27

13-10-06 AA1 27

IEEE floats
� De-normalized values (e= 0 or 11…)

� e=0: E=1-bias, bias=2k-1-1
� Coding compensates for M not having an implied

leading 1.
� M=m
� For numbers very close to 0.

� e=11…:
� m=0, (signed infinite)
� m!=0, NaN.

28

13-10-06 AA1 28

Features of IEEE floats
� +0.0 == 0 (binary representation = 00…).
� If interpreted as unsigned int, floats can be

sorted (+x ascending, -x descending).
� All int values representable by doubles.
� Not all int values representable by floats.

� round to even (avoid stat. bias)
� round towards 0
� round up
� round down
� can’t choose in C…

?

29

13-10-06 AA1 29

Properties
� Operations NOT associative.
� Not always inverse (infinity).
� Loss of precision.
� Ex: x=a+b+c; y=b+c+d;

Optimize or not?
� Monotonicity a≥b ⇒ a+x≥b+x
� Casts:

� int2float rounded, double2float rounded/overflow
� int2double, float2double OK
� float2int, double2int truncated/rounded/overflow.

Important for
compilers and
programmers.

30

13-10-06 AA1 30

IA32: The good and the bad
� Good: Uses internally 80 bits extended

registers for more precision.
� Bad:

� Stack based.
� Side effects like changing values when loading

or saving numbers in memory whereas
register transfers are exact.

� Extensions: MMX, SSE, Altivec. SIMD
instructions = operations working in
parallel on multiple data.

31

13-10-06 AA1 31

Implementation - summary
� Integers

� addition/subtraction simple
� multiplication:

r=0; while(b) do { if (b&1) r+=a; a+=a; b>>=1; }
� division iterative

� Floats
� addition/subtraction complicated

� check for 0, align significands, add/sub, normalize
� guard bits to avoid losing precision on very close numbers

(1.00…*2^1 – 1.11…2*0)
� multiplication/division principle simpler

� multiply/divide significands, add/sub exponents, detect
over/under-flow.

32

13-10-06 AA1 32

Complex functions
� Lagrange

polynomials
� Taylor series

� Other numerical methods that converge rapidly.
� Intel:: cos, sin, sqrt, in hardware.
� Special (int): random generator xi+1=(axi+c)%m.

� Simple but correlation between successive values.
� Higher bits better quality than lower bits.

∑

∑ ∏
∞+

=

= ≠=

−
=

−
−

=

0

0
0

)(

0 ,0

!
)()()(

)()(

i

i
i

n

i ki

k
n

ikk
in

i
xxxfxf

xx
xxxfxP

33

13-10-06 AA1 33

Numerical precision
� Evaluation of precision

� absolute x ± α
� relative x*(1 ± α)

� Be careful with division by very small
values: Can amplify numerical errors.
� Numerical justification for Gauss’ method to

solve linear equations.

� More in courses on numerical methods.

