
1

Algorithms & Architecture
Representing and

Manipulating Numbers

Alexandre David
B2-206

What this lecture is about: Secrets of number encoding, how to hack integers
(and floats). ☺

2

13-10-06 AA1 2

Today
Representation of numbers – introduction.
Integer coding.
Basic arithmetic.
Hexadecimal notations.
Endianness.
IEEE floats.
Implementation of functions.
Numerical precision.

3

13-10-06 AA1 3

Basics
Natural/Real Numbers

Base 10
Infinite
Exact

Computer Numbers
Base 2
Finite
Rounding - overflow

In this lecture
How to represent numbers – range, encoding.
Arithmetic.
How to use these numbers.

Unit for coding = bit.
Finite number of bits, finite numbers.
Signed/unsigned: similar representations but different interpretations.

4

13-10-06 AA1 4

Questions
How to code negative numbers?
How to code real numbers?
Which kind of precision do we get?

Small numbers vs. big numbers.

?
?
?

5

13-10-06 AA1 5

Example
Overflow:
main() {

printf(“%d\n”,200*300*400*500);
}
outputs -88490188.
Fix – sort of:
main() {

printf(“%lld\n”,200LL*300LL*400LL*500LL);
}
outputs 12000000000.

?

? What if I forget LL?

Limits of int32_t: -2^31…2^31-1.

6

13-10-06 AA1 6

Example
Loss of precision:
(3.14+1e20)-1e20==0.0
3.14+(1e20-1e20)==3.14
Test x == 0.0 not very useful when solving
equations.

?

7

13-10-06 AA1 7

Information Storage
Basic unit is the byte (=8 bits).

88double
44float
84char *
84long int
44int
22short int
11char
Compaq AlphaTypical 32-bitC-declaration

Size of the different types of integers depends on the architecture. Addressing
is limited by the size of pointers that gives the size of addressable memory.

8

13-10-06 AA1 8

Features
Limits on addressable memory.
Size of registers – 32/64.
Aligned memory allocation (32/64 bits).
Careful on addressing:
main() {

char a[]=“Hello world!”;
int *p=&a[1];
printf(“%d\n”,*p);

}

?

9

13-10-06 AA1 9

Integer Coding
Unsigned integers:

Signed integers:
Called 2 complement.

Highest bit codes the sign.

∑

∑
−

=

−
−

−

=

+−=

=

2

0

1
1

1

0

22

2

w

i

i
i

w
w

w

i

i
i

xxSB

xUB

w: size of a word (in bits)
x: bits (0 or 1)

10

13-10-06 AA1 10

Basic Arithmetic
Logical operations (bitwise):
&,|,^,~,<<,>>.
Example: a ^= b; b ^= a; a ^= b;
Arithmetic operations: + - * /.
Careful with shifts on signed integers!
Do not mess up with boolean operations
(&&, ||).

?
?

11

13-10-06 AA1 11

Properties
Operations are the same on
signed/unsigned integers.
Check properties on the notes.
Operations based on the algebra
<Zn,+n,*n,-n,0,1>. Operations modulo n
and -a=0 or -a=n-a.

Basic properties:
•commutativity: a+b=b+a, a*b=b*a
•associativity: (a+b)+c=a+(b+c), (a*b)*c=a*(b*c)
•distributivity: a*(b+c)=a*b+b*c
•identities: a+0=a, a*1=a
•annihilator: a*0=0
•cancellation: -(-a)=a
Properties for integer ring <Z,+,*,-,0,1> and for boolean algebra
<{0,1},|,&,~,0,1> are similar (| instead of +, & instead of *).
Unique for integer ring: a+-a=0.
Unique for boolean algebra:
•distributivity: a|(b&c) = a&(b|c)
•complement: a|~a=1, a&~a=0
•idempotency: a&a=0, a|a=a
•absorption: a|(a&b)=a, a&(a|b)=a
•DeMorgan laws: ~(a&b)=~a|~b, ~(a|b)=~a&~b

12

13-10-06 AA1 12

Shifts & Masks
Read bit n: Use mask (1 << n).
Set bit n on int bits[]:
ipos = n / 32;
imask = 1 << (n % 32);
bits[ipos] |= imask;
Shifts as division/multiplication by powers
of 2.
Shifts for negative numbers has “wrong”
rounding.
Correct: (x<0?(x+(1<<k)-1):x)>>k.

13

13-10-06 AA1 13

How does it work?

1011
+1101
111
11000

1011 multiplicand
*1101 multiplier
1011

0000 partial
1011 products
1011

10001111 productSubtraction?

14

13-10-06 AA1 14

How does it work?

1011 10010011
divisor dividend

10010011/1011=?

0
1011 10010011
1011

00
1011 10010011

1011

000
1011 10010011

1011

0000
1011 10010011

1011

00001
1011 10010011

-1011
001110 partial remainder

1011

1

quotient

15

13-10-06 AA1 15

Block Diagram for A+B, A-B

B Register A Register

2-complementer

switch +/-

Adderoverflow

16

13-10-06 AA1 16

Block Diagram for M*Q

Mn-1 . . . M0

Multiplicand

n-bit adder shift & add logic

Qn-1 . . . Q0

Multiplier

An-1 . . . A0C

add

shift right

C A Q M
0 0000 1101 1011

0 1011 1101 1011 +
0 0101 1110 1011 >>

0 0010 1111 1011 >>

0 1101 1111 1011 +
0 0110 1111 1011 >>

1 0001 1111 1011 +
0 1000 1111 1011 >>

Product in A,Q

17

13-10-06 AA1 17

Flowchart for unsigned *
C,A ← 0
M ← multiplicand
Q ← multiplier
count ← n

Q0=1?

C,A← A+M

right shift C,A,Q
count ← count-1

count=0? product in A,Q

yesno

yesno

18

13-10-06 AA1 18

Flowchart for unsigned /
A ← 0
M ← divisor
Q ← dividend
count ← n

shift left A,Q
A ← A-M

A<0?

Q0 ← 1 Q0 ← 0
A ← A+M

count ← count-1

count=0? quotient in Q
remainder in A

yesno

yesno

19

13-10-06 AA1 19

Arithmetic
Machine code of + - * / same for int/uint.
Integer convertion == type casting.

Padding for the sign (int).
Conversion is modulo the size of the new int.
Beware of implicit conversions in C!

Optimizations for some operations:

2*a == a+a == a<<1 a/2 == a>>1
a*2^i == x << i a/2^i == a>>i
a%2^i == a & ((1<<i)-1) 2^i == 1<<i

Previous read example for a positive index n:
ipos = n >> 5;
imask = 1 << (n & 31);
bits[n] |= imask;

20

13-10-06 AA1 20

Notes
Beware of precedence of operators:

if (x & mask == value) WRONG
if ((x & mask) = value) RIGHT

Test odd numbers: if (x & 1)
Careful:
unsigned int i;
for(i = 0; i < n-1; ++i) … ?

21

13-10-06 AA1 21

Hexadecimal Notation
Learn the first powers of 2.
Hexadecimal more useful:

One digit codes 4 bits. 0…F=0…15=16
numbers.
C notation: 0x…

Examples:
0xa57e=1010 0101 0111 1110

10=8+2,5=4+1,7=4+2+1,14=8+4+2
0xf = 1111, 0x7=0111, 0x3=0011

Remember: Individual bits are accessed by shifts and masks.
Ranges:
•uint: 0…0xffffffff
•int: 0x80000000…0x7fffffff

0xf, 0x7, 0x3, 0x7f, … are strings of consecutive 1s.
To get the encoding of negative numbers, use -a=~a+1.

22

13-10-06 AA1 22

Hack
Allocated memory is 32 bits aligned

2 lower bits are = 0.
Use them to store data.
But it’s a hack.

23

13-10-06 AA1 23

Endianness: Beware!
“0xa57e” is a notation for humans.
Corresponds to “1010 0101 0111 1110” in
base 2.

Little endian: stored as 0111111010100101.
Big endian: stored as 1010010101111110.

Does not matter in C, except for
bitmap manipulation
device drivers
network transfers

24

13-10-06 AA1 24

Testing for endianness
Write a value on 32 bits.

Read 8/16 bits and check what was written.
Exercise for Sun/Intel.

Intel?
Sun?
What if a = 0x70000000?

main() {
int a = 0xf0000000;
char *c = &a;
printf(“%x\n”, *c);

}0
fffffff0?

•endianness
•sign coding
•integer convertion

25

13-10-06 AA1 25

Representation of reals
How to code a real number with bits?

Finite precision → approximation.
Represent very small and very large numbers
→ density of encoding varies.

Scientific notation used, e.g. (base 10),
3.141e2 – but in base 2.
Starter: fractional numbers – bad for large
or small numbers.

Decimal (d):
Binary(b): ∑

−=

=
m

ni
i

i dd 10 ∑
−=

=
m

ni
i

i bb 2

26

13-10-06 AA1 26

IEEE floats
IEEE floating point standard

V=(-1)SM*2E

Number of bits (float/double):
s[1], m[23/52], e[8/11].
Normalized and de-normalized values.
Bit fields: s, m, e to code respectively S, M, E.

Normalized values (e≠0, e≠111…)
E=e-bias (-126…127/-1022…1023).
M=1+m (1≤M<2)
Trick for more precision: implied leading 1

Bias is used for a smooth transition between normalized and de-normalized
numbers. IEEE distinguishes between +0.0 and -0.0: one more reason to test
with a tolerance.
NaN generated for √-1, inf-inf, 0/0.

27

13-10-06 AA1 27

IEEE floats
De-normalized values (e= 0 or 11…)

e=0: E=1-bias, bias=2k-1-1
Coding compensates for M not having an implied
leading 1.
M=m
For numbers very close to 0.

e=11…:
m=0, (signed infinite)
m!=0, NaN.

28

13-10-06 AA1 28

Features of IEEE floats
+0.0 == 0 (binary representation = 00…).
If interpreted as unsigned int, floats can be
sorted (+x ascending, -x descending).
All int values representable by doubles.
Not all int values representable by floats.

round to even (avoid stat. bias)
round towards 0
round up
round down
can’t choose in C…

?

29

13-10-06 AA1 29

Properties
Operations NOT associative.
Not always inverse (infinity).
Loss of precision.
Ex: x=a+b+c; y=b+c+d;
Optimize or not?
Monotonicity a≥b ⇒ a+x≥b+x
Casts:

int2float rounded, double2float rounded/overflow
int2double, float2double OK
float2int, double2int truncated/rounded/overflow.

Important for
compilers and
programmers.

30

13-10-06 AA1 30

IA32: The good and the bad
Good: Uses internally 80 bits extended
registers for more precision.
Bad:

Stack based.
Side effects like changing values when loading
or saving numbers in memory whereas
register transfers are exact.

Extensions: MMX, SSE, Altivec. SIMD
instructions = operations working in
parallel on multiple data.

31

13-10-06 AA1 31

Implementation - summary
Integers

addition/subtraction simple
multiplication:
r=0; while(b) do { if (b&1) r+=a; a+=a; b>>=1; }
division iterative

Floats
addition/subtraction complicated

check for 0, align significands, add/sub, normalize
guard bits to avoid losing precision on very close numbers
(1.00…*2^1 – 1.11…2*0)

multiplication/division principle simpler
multiply/divide significands, add/sub exponents, detect
over/under-flow.

32

13-10-06 AA1 32

Complex functions
Lagrange
polynomials
Taylor series

Other numerical methods that converge rapidly.
Intel:: cos, sin, sqrt, in hardware.
Special (int): random generator xi+1=(axi+c)%m.

Simple but correlation between successive values.
Higher bits better quality than lower bits.

∑

∑ ∏
∞+

=

= ≠=

−
=

−
−

=

0

0
0

)(

0 ,0

!
)()()(

)()(

i

i
i

n

i ki

k
n

ikk
in

i
xxxfxf

xx
xxxfxP

33

13-10-06 AA1 33

Numerical precision
Evaluation of precision

absolute x ± α
relative x*(1 ± α)

Be careful with division by very small
values: Can amplify numerical errors.

Numerical justification for Gauss’ method to
solve linear equations.

More in courses on numerical methods.

