

What this lecture is about: Secrets of number encoding, how to hack integers (and floats).

Today

- Representation of numbers introduction.
- Integer coding.
- Basic arithmetic.
- Hexadecimal notations.
- Endianness.
- IEEE floats.
- Implementation of functions.
- Numerical precision.

13-10-06

AA1

2

Unit for coding = bit.

Finite number of bits, finite numbers.

Signed/unsigned: similar representations but different interpretations.

Limits of int32_t: -2^31...2^31-1.

Inform	ation Storag	je
Basic un	it is the byte (=	8 bits).
C-declaration	Typical 32-bit	Compaq Alpha
char	1	1
short int	2	2
int	4	4
long int	4	8
char *	4	8
float	4	4
double	8	8

Size of the different types of integers depends on the architecture. Addressing is limited by the size of pointers that gives the size of addressable memory.

Basic properties:

•commutativity: a+b=b+a, a*b=b*a

•associativity: (a+b)+c=a+(b+c), (a*b)*c=a*(b*c)

•distributivity: a*(b+c)=a*b+b*c

```
•identities: a+0=a, a*1=a
```

```
•annihilator: a*0=0
```

```
•cancellation: -(-a)=a
```

```
Properties for integer ring \langle Z, +, *, -, 0, 1 \rangle and for boolean algebra
```

```
<{0,1},|,&,~,0,1> are similar (| instead of +, & instead of *).
```

Unique for integer ring: a+-a=0.

Unique for boolean algebra:

```
•distributivity: a|(b&c) = a&(b|c)
```

```
•complement: a|~a=1, a&~a=0
```

```
•idempotency: a&a=0, a|a=a
```

•absorption: a|(a&b)=a, a&(a|b)=a

•DeMorgan laws: ~(a&b)=~a|~b, ~(a|b)=~a&~b

How does	it work?		
+1101	1011 *1101	multiplicand multiplier	
<u> 111 </u>	1011		
TTOOO	0000 1011	partial products	
Subtraction?	1011	product	
		μισααεί	
13-10-06	AA1		13

How does	it work?	
10010011/1011=?	000 1011 10010011	
1011 10010011 divisor dividend quotient 0 1011 10010011 1011 00 1011 10010011 1011	$ \begin{array}{c} 0000\\ 1011 \\ 000011\\ 1011\\ 000011\\ 1011 \\ 10010011\\ -1011 \\ 001110 \\ 001110 \\ 00111 \end{array} $	
13-10-06	AA1	14

Previous read example for a positive index n:

ipos = n >> 5; imask = 1 << (n & 31); bits[n] |= imask;

Remember: Individual bits are accessed by shifts and masks.

Ranges:

•uint: 0...0xffffffff

•int: 0x8000000...0x7fffffff

0xf, 0x7, 0x3, 0x7f, ... are strings of consecutive 1s.

To get the encoding of negative numbers, use -a=-a+1.

- •endianness
- •sign coding
- •integer convertion

Bias is used for a smooth transition between normalized and de-normalized numbers. IEEE distinguishes between +0.0 and -0.0: one more reason to test with a tolerance.

NaN generated for $\sqrt{-1}$, inf-inf, 0/0.

