
1

Algorithms & Architecture
Introduction

+ Growth of Functions

Alexandre David
B2-206



2

10/10/06 AA1 2

Goals – The course
Analysis (and design) of algorithms.

asymptotic behavior, complexity, recurrences

Sorting algorithms
bubble/quick/merge/heap-sort

Data structures
stacks, queues, lists, hash tables, binary/red-
black trees

Others – you ask (e.g. Linux scheduling 
algorithm, how to compute polynomials).

This is also your checklist for the end of the course. You should be familiar 
with all the concepts mentioned here.



3

10/10/06 AA1 3

The course

1 – Introduction +
growth of functions

2 - Numbers

3 - Recurrences 4 – Probabilities +
randomized algorithms

5 – Sorting + X

6 – Sorting + X

7 – Sorting (end) +
data structures

8 – Hashing + X 9 - Trees

10 – Trees + X

That’s a simple dependency between the lectures. You can ask for something 
earlier as long as it does not break the dependency.



4

10/10/06 AA1 4

Goals - Today
Notion of algorithms.

GCD example.

Algorithmic problem solving.
Problem types.

Sorting example.
Numerical example.

What it means to analyze algorithms.



5

10/10/06 AA1 5

Notion of Algorithms
Why study algorithms?
What is an algorithm?
Example: GCD – greatest common divisor.

Simple and clear requirement.
Define range of inputs.
Different algorithms to solve it.
Different ideas & running speeds.

?

?

Why study? – Practical reason: to know a standard set of algorithms and not 
reinvent the wheel;  Design new algorithms & analyze their efficiencies. 
Theoretical reason: cornerstone of computer science. There is no computer 
program without algorithm.
What is an algorithm? – Sequence of unambiguous instructions for solving a 
problem, i.e., for obtaining a required output for any legitimate input in a finite
amount of time. Goal in the study: to understand what is happening and why it 
takes long or not to execute.



6

10/10/06 AA1 6

GCD: The problem
Greatest common divisor of 2 non-negative 
integers, denoted gcd(m,n), defined as the 
largest integer that divides both m and n 
with a remainder of zero.
Algorithms:

Consecutive integer checking.
Euclid’s algorithm.
Prime decomposition.

?

?

Give a clear specification of inputs and outputs.



7

10/10/06 AA1 7

Consecutive integer checking
Idea: Solution cannot be greater than 
min(m,n). Let t=min(m,n). Check t and try 
again by decreasing t.
Correctness: greatest? Termination?
Efficiency: (worst case) execution time?

?

1: t ← min(m,n)
2: if m mod t == 0 then 3: else 4:
3: if n mod t == 0 return t else 4:
4: t ← t-1
5: go to step 2:

?

!

Correctness: argue for right solution *and* termination.
Complexity question: size of the input or value of the input?
Oops: what if t == 0 from the beginning (m or n == 0)?



8

10/10/06 AA1 8

Euclid’s algorithm
Idea: Apply repeatedly gcd(m,n)=gcd(n, m 
mod n) until m mod n == 0. Ex: 
gcd(60,24)=gcd(24,12)=gcd(12,0)=12.
Correctness? Termination? Efficiency??
Algorithm Euclid(m,n)
// Input: two non-negative, non both zero integers m and n.
// Output: gcd(m,n).
while n != 0 do

r := m mod n
m := n
n := r

done
return m

!

There can be different description formats for algorithms.



9

10/10/06 AA1 9

Prime decomposition
Idea: Decompose m and n into primes and 
pick the common factors.

Problem: Non-trivial sub-problems to be 
solved.

1: Find the prime factors of m.
2: Find the prime factors of n.
3: Identify all the common factors – If p is a common factor

occurring pm and pn times in m and n, respectively, it should
be repeated min(pm,pn) times.

4: Return the product of all the common factors.

Finding primes is expensive.
This is an expensive and complex algorithm (even if it is the one we learn at 
school).



10

10/10/06 AA1 10

Algorithmic problem solving
Understand the problem.
Choose exact/approximate solution.
Decide on appropriate data structures.
Apply an algorithm design technique.
Specify the algorithm.
Prove the correctness of the algorithm.
Analyze the algorithm – time & space –
simplicity – generality.
Code the algorithm. Supposed to be at the end!

These are the steps to design and analyze algorithms. Do not underestimate 
understanding the problem – by examples & special cases.
Approximate technique when the problem cannot be solved exactly or it may 
be too expensive to get an exact solution – intrinsic difficult problems.
Algorithm design technique: divide-and-conquer, brute force, follow a proof 
technique, equation solving, …
Check the generality of the problem solved the accepted – Are 2 integers 
relatively primes? Checking for GCD is easier (gcd == 1).
Right choice of algorithm = several orders of magnitude of performance 
difference. Code tuning = constant factor improvement. Of course 2x 
faster is worth but it is minor.



11

10/10/06 AA1 11

Problem types
Sorting

stable? in place?

Searching
String processing
Graph problems
Combinatorial problems
Geometric problems
Numerical problems

?

Sorting: Rearrange items in ascending (or descending) order. There must be a 
total order on the set. Useful for other algorithms, used everyday for practical 
purposes. Stable algorithm: It preserves the order of 2 equal elements. In 
place algorithm: It does not require extra memory (apart from a constant 
overhead).
Searching: Given a key, find a value. How to organize big sets of data for 
efficient search?
Strings: string matching.
Graph problems: traversal, shortest path, coloring…
Combinatorial: Find a combinatorial object satisfying a set of constraints and 
has some property (a max/min cost). Difficult in general.
Geometric problems: closest pair, convex hull, circuit layout.
Numerical problems: equations and system of equations.



12

10/10/06 AA1 12

Sorting example
Sorting problem:
Input: a sequence of n numbers 
〈a1,a2,…,an〉.
Output: a permutation (re-ordering) 
〈a1’,a2’,…,an’〉 of the input s.t. 
a1’≤a2’≤…≤an’.
Algorithms to solve it: insertion sort, 
merge sort, quicksort… Insertion sort takes 
c1n2 in time, merge sort takes c2nlg(n).



13

10/10/06 AA1 13

Good algorithm vs. tuning
Let’s sort 106 elements (only 1 million).
Optimized insertion sort @ 1GHz:
2n2 → 2(106)2/109 = 2000s.
Average merge sort @ 10MHz:
50nlg(n) → 50*106*lg(106)/107=100s.

Moore’s law: 2x every 18 month is not 
enough.



14

10/10/06 AA1 14

Numerical example
Find x s.t. f(x) = 0 for a 
continuous monotonic 
function.

Bisection algorithm:
Iterate on [x,y]0,[x,y]1… s.t. 
f(x)<0 and f(y)>0 (or 
opposite).
Reduce interval by 2 
everytime.

Newton-Raphson algorithm:
Use derivative with xi+1=xi-
f(xi)/f’(xi). Faster convergence.

Flat or exponential 
functions.

Particular cases:
•multiple zeros.
•exponential or very flat functions.



15

10/10/06 AA1 15

Analyzing algorithms
Criteria

correctness
amount of work done
amount of space used
simplicity, clarity
optimality

Asymptotic behavior
Different analysis techniques

?

Correctness: What does “correct” mean? Input (pre-condition) and output 
(post-condition) are valid. Prove theorems if needed, check implementation.
Work: Efficiency of the method (not just execution time). We want a machine 
(and instruction + language) independent analysis technique.
Optimality: Problems have some inherent complexity. Optimal means best 
possible.
Analysis: Induction technique, recursion tree, straight-forward proof, math 
theorem… to match different kinds of algorithms, e.g., brute force, divide-and-
conquer.



16

10/10/06 AA1 16

Asymptotic behavior
Why do we care?
What happens for large instances of the 
problems?
How to compare different algorithm?

Asymptotic running time of algorithm:
n → +∞

?



17

10/10/06 AA1 17

Asymptotic notations
Θ-notation: asymptotic tight bound.
Θ(g(n))={f(n)|∃c1>0, c2>0,n0≥0.

∀n≥n0, 0≤c1g(n)≤f(n)≤c2g(n)}
Θ(g(n)) is a set so we write f(n)∈ Θ(g(n)).
O-notation: asymptotic upper bound.
O(g(n))={f(n)|∃c>0,n0≥0.

∀n≥n0, 0≤f(n)≤cg(n)}
O(g(n)) is a set so we write f(n)∈ O(g(n)).
Ω-notation: asymptotic lower bound.
Ω(g(n))={f(n)|∃c>0,n0≥0.

∀n≥n0, 0≤cg(n)≤f(n)}
Ω(g(n)) is a set so we write f(n)∈ Ω(g(n)).



18

10/10/06 AA1 18

Asymptotic notations
Why is there a n0 in the definition?

O weaker than Θ: Θ(g(n)) ⊆ O(g(n)).
Ω weaker than Θ: Θ(g(n)) ⊆ Ω(g(n)).
Theorem:
f(n)=Θ(g(n)) iff f(n)=O(g(n)) and
f(n)=Ω(g(n)).
Abuse of notation = instead of ∈.

?

It does not matter what happens before n0. We are interested in the asymptotic 
behavior.
Insertion sort: T(n)= Θ(n2).



19

10/10/06 AA1 19

Asymptotic notations
o-notation: upper bound not asymptotically 
tight.
o(g(n))={f(n)|∀c>0, ∃n0, ∀n≥n0, 
0≤f(n)<cg(n)}.
2n∈o(n2) but not 2n2.
ω-notation: lower bound not asymptotically 
tight.
ω(g(n))={f(n)|∀c>0, ∃n0, ∀n≥n0, 
0≤cg(n)<f(n)}.
n2/2∈ω(n) but n2/2∉ω(n2).

Check properties of the different asymptotic notations p 49.



20

10/10/06 AA1 20

Standard notations and 
common functions
Read section 3.2. Good to know.
Fibonacci numbers.


