Algorithms and Architecture I

String Matching

(also called string searching)

The Problem

> Given a text T and a pattern P, find an
occurrence of P inside 7' or return no match.

> T is of size t, P is of size p.

- Example:

ABABC = P
BCACABABABCCA< T

Straight-Forward Solution

> Compare P to T starting at position 1

- if mismatch, move P to the right and try again

- if match, return current position

> Worst case: (t-p+1)*p comparisons, that is O
((t-p)*p) and if p=o(t) we have O(t*p).

B
N
BCA@A

>

ABABC A
BCACABABABCCA BC

BCACABABABC

—>

ABC

4>

ABABC

CA

BABC
ACABABABCCA

Match!

4>

BC

p

ABC
ABABABCCA

ABABC . BABC
BABABCCA BCACABABABCCA BCACABABABCCA

With Finite Automata

> (Given P, it is possible to construct a finite
automaton that is used to scan 7' in O(%).

> Idea 1s to remember the last matched sub-
string and to reuse the information.

> Match = reach *, no match = get stuck.

> Construction of the automaton:
O(p* lalphabet |).
C

B,C A A

A
start % B 9 A 96 C e
W B,C ’
B

stuck
B,C C A
BCACABABABCCA ~ BC

> BCACABABABCCA

4>

With Finite Automata

> Algorithm: scan T and take transitions in
the automaton. Success if reach *, failure if

>

BCACABABABCCA

ACABABABCCA

12

BCACABABABCCA

=2

> BCACABABABCCA

4>

1

1

1

2

1

2

3

4

5

4

5

*

23

BCACABABABCCA

Match!

BCACABABABCCA

Knuth-Morris-Pratt Flowchart

> (Given P, it is possible to construct a finite
flowchart used to scan T in O(t+p).

> Idea 1s to remember the maximum of
matchable characters before the i" position.

> Match = reach *, no match = get stuck.

> Construction of the flowchart: O(p®).

Get next

Next table:

Knuth-Morris-Pratt Flowchart

> Algorithm: scan T and follow P according to
the next table.

Get next

=i
oo,
@

Next table:

ACABABABCCA
211/2[314/5[35]* Match!

B
00
1

Boyer-Moore Algorithm

> Idea is to skip text without checking it. Scan
from right to left, use heuristics to decide
how far to jump.

> Average running time O(t/p), worst O(t*p).

noD in P
ABABC , ABABC
BCACDABEBCABABCCA BCACDABEBCABABCCA

no E in P

> ABABC S ABABC
BCACDABEBCABABCCA BCACDABEBCABABCCA

ABAB Match!
BCACDABEBCABABCCA

Rabin-Karp Algorithm

> Uses hash to identify equal strings! Very

powerful

for multi-pattern matching.

> Trick: use a special hash function. Treat the
characters as number in some base, usually
a “big” prime = compute next hash
iteratively. Hopetfully few collisions.

> Average running time O(t), worst O(t*p).

ABABC *h

BCACABAB
BCACABAB
BCACABAB

ash

ABCCA initial hash BCACABABABCCA
ABCCA updatein O(1) BCACABABABCCA
ABCCA BCACABABABCCA

BCACABAB

ABCCA

i) Rabin-Karp Algorithm

> Hash update: “shift” in the corresponding
base.

> Also practical to use base 256 for characters
(=1 byte) and a prime as the hash table size.
Worse hash function, more collisions, but
very fast to compute and performs well
(when using xor).

> Usetul for one of the fun challenges.

10

