Algorithms and Architecture I

Sorting in Linear Time

il Linear Sort? But...

> Best algorithms so far perform in ®(nlgn).
They are comparison sorts.

> Comparison sorts need at least Q(nlgn).
Previous algorithms were optimal.

> Decision-tree model to prove Q(nlgn):

- binary trees representing comparisons
- all possible permutations are represented
- n!/ permutations for size n, thus, n!/ leaves

- sorting algorithms find an ordering, i.e., a path

T Counting Sort

> Assume that O<a 1..n—<k' When £=0(n), the

sort runs in ®(n) time.

> Idea: for every x, count how many elements
are < x, say t, then put x at ¢.

> Count-sort(A,B,k): // B 1s the output
for 1:=0 to k do CJi]:=0 // initialize
for i1:=1 to length(A) do C[A[i]]l++ // countis
for 1:=1 to k do Cli]+=Cl[i-1] // count <1
for i:=length[A] downto 1 do
BIC[A[i]]]:=Ali] // write x at ¢

ClA[1]]-- // update counter

i Counting Sort

> Running time in &(n+k), which becomes
&(n) when k=o(n).

> There 1s no comparison.

> The sort is stable (order kept for ai==aj).

> Problem: range of numbers that translate
into the size of the working arrays.

5 Radix Sort

> Sort on digits of the numbers, least
significant digits first, with a stable sort
algorithm, i.e., counting sort.

> Radix-sort(A,d): // d digits
for i:=1 to d do sort_stable A on digit i

> If we sort n d-digits numbers with each digit
taking k values (i.e. base £), the running

time 1s AXd(n+k)).

> Careful of the constants for comparison + it
1s not an in-place sorting algorithm.

5 Bucket Sort

> Assumes the input is uniformly distributed.
> Assumes the input in [0,1)

> bucket-sort(A):
n:=length(A)
for 1:=1 to n do insert Ali] into list B[nAli]]
for 1:=0 to n-1 do insertion_sort list B[i]
concatenate lists B[0], B[1], ...,B[n-1]

. . n—1
> Running time: T(n)z@(n)+zi:0 O(n?)

> Expected running time: G(n).

