Algorithms and Architecture 1

Representing and Manipulating Numbers

Alexandre David

- Introduction
- Information storage
- Integer coding
- Basic arithmetics
- Hexadecimal notation
- Endianness
- Floats
- IEEE FP
- Implementation of functions
- Numerical Precision

Natural/Real Numbers

- Base 10
- Infinite
- Exact

Numbers in Computers

- Base 2
- Finite representation
- Rounding - overflow

In this lecture

- How to represent numbers - range, encoding
- Arithmetics
- How to use these numbers

Examples

- Overflow:
main() \{ printf("\%d\n", 200*300*400*500);
\}

outputs -884901888

main() \{
printf("\%lld\n",200LL*300LL*400LL*500LL);
\}
outputs 12000000000

- Loss of precision:
$(3.14+1 e 20)-1 e 20==0.0$
$3.14+(1 \mathrm{e} 20-1 \mathrm{e} 20)==3.14$

Information Storage

- Basic unit is the byte (=8 bits).

C-declaration	Typical 32 -bit	Compaq Alpha
char	1	1
short int	2	2
int	4	4
long int	4	8
char*	4	8
float	4	4
double	8	8

- Note1: beware of addressing.
- Note2: allocated memory is 32/64 bits aligned.

Integer Coding

- Unsigned integers:
- Signed integers:

$$
\begin{aligned}
& U B=\sum_{i=0}^{i=w-1} x_{i} 2^{i} \\
& S B=-x_{w-1} 2^{w-1}+\sum_{i=0}^{i=w-2} x_{i} 2^{i}
\end{aligned}
$$

with w being the size of a word (in bits), x the bits.
Coding for signed integers is called 2 complement.

- The highest bit codes the sign.
- Overflow rounds up

Basic Arithmetics

- Logical operations (bitwise): \& | ^ ~ >> <<
- Arithmetics operations: + - */
- Careful with shifts on signed integers.
- Do not mess up with boolean operations (\&\& ||).
- Properties:
- Operations are the same on int/unsigned int.
- Commutativity, associativity, distributivity, identities, annihilator, cancellation, idempotency, absorption, De Morgan laws.
- Identity: $-\mathrm{a}==\sim \mathrm{a}+1$

Arithmetics Cont.

- Applications:
- Machine code of + - * same for int/uint
- Howto set/unset/read bits? Swap example.
- Integer convertion == type casting
- Padding for the sign (int)
- Convertion is modulo the size of the new int.
- Beware of implicit conversions in C.
- Optimizations for some operations:
- $2^{*} a==a+a==a \ll 1, a / 2==a \gg 1$
- $\mathrm{a}^{*}=2^{\wedge} \mathrm{i}==\mathrm{x} \ll=\mathrm{i}, \mathrm{a} /=2^{\wedge} \mathrm{i}==\mathrm{x} \gg=\mathrm{i}$
- $a \% 2^{\wedge} i==a \&((1 \ll i)-1), 2^{\wedge} i==1 \ll i$

Hexadecimal Notation

- Get used to know by heart first powers of 2.
- Very useful to manipulate bits.
- A digit codes 4 bits (0..F, ie, $0 . .15$) $=16$ numbers.
- 0..9, obvious. A..F = 10..15.
- C notation 0x.. for hexadecimal.
- Examples:
- 0xa57e: $(10=8+2)(5=4+1)(7=4+2+1)(14=8+4+2)$ 1010010101111110
- Useful to know 0xf 0x7 0x3.
- Individual bits accessed by shifts and masks.
- uint: 0..0xffffffff, int: 0x80000000..0x7fffffff

Endianness: Beware

- When I write "0xa57e", it is a notation for humans. In base 2, it is " 101001010111 1110".
- Little endian: stored as 0111111010100101 Big endian: stored as 1010010101111110 in memory, at the bit level on the chip.
- It does not matter in C, you never need to pay attention to it except:
- For bitmap manipulation
- Device drivers
- Network transferts
- When the bit ordering matters where you are writing

Example

```
main() {
    int a = 0xf0000000;
    char *c = &a;
    printf("%x\n", *C);
}
```

- Intel: outputs 0
- Sun: outputs fffffff0

Why?

- What if $a=0 \times 70000000$?

Floats

- How to code a real number with bits?
- Finite precision -> approximation
- Represent very small and very large numbers -> "density" of encoding varies.
■ Scientific notation used, eg (base 10), 3.141e12 but in base 2.
- Fractional numbers (bad for large numbers)
- Decimal:
- Binary:

$$
\begin{aligned}
& d=\sum_{i=-n}^{m} 10^{i} d_{i} \\
& b=\sum_{i=-n}^{m} 2^{i} b_{i}
\end{aligned}
$$

- IEEE floating point standard
- $V=(-1)^{s} M 2^{E}$
- Number of bits (float/double) for s: 1, m: 23/52, e: 8/11
- Normalized and denormalized values
- Bit fields: s, m, e to code respectively S, M, E

■ Normalized values (e!=0, e!=111...)

- E=e-bias (-126..127/-1022..1023)
- $M=1+f$
\rightarrow Trick for more precision: implied leading 1 representation.
$1 \leqslant M<2$

IEEE FP Cont.

- Denormalized values (E : only 0s or 1s)
- $\mathrm{e}=0, \quad E=1$-bias, bias $=2^{k-1}-1$
\rightarrow Coding compensates for M not having an implied leading 1.
$\rightarrow \mathrm{M}=\mathrm{f}$
\rightarrow Coding for numbers very close to 0 and $0(+0.0,-0.0)$
- $\mathrm{e}=111$.
$\rightarrow f=0$, (signed) infinite
$\rightarrow \mathrm{f}!=0, \mathrm{NaN}$
- Properties
- $+0.0==0$
- If interpreted as unsigned integers, floats can be sorted (+x ascending, -x descending)

Properties

- Operations not associative
- Not always inverse (infinity)

Important for compilers and programmers.

- Loss of precision.
- Example: $\mathrm{x}=\mathrm{a}+\mathrm{b}+\mathrm{c}$; $\mathrm{y}=\mathrm{b}+\mathrm{c}+\mathrm{d}$;

Optimize or not?

- Monotonicity
- Cast: $\quad a \geqslant b \Rightarrow a+x \geqslant b+x$
- int2float rounded, double2float rounded/overflow
- int/float2double OK
- float/double2int truncated/rounded/overflow

IA32: The Good and The Bad

- Good: uses internally 80 bit extended registers for more precision.
- Bad:
- Stack based FP
- Side effects like changing values when loading or saving numbers in memory whereas register transferts are OK. Memory accesses may imply rounding (to float or double).

Implementation of Functions

- Integers
- Addition/substraction simple
- Multiplication based on
$r=a * b: r=0 ; ~ w h i l e(b) ~ d o ~\{i f(b \& 1) r+=a ; a+=a ; ~ b \gg=1 ; ~\}$
- Division iterative like pen and paper
- Floats
- Addition/substraction require
\rightarrow Check for 0 , align the significands, +/-, normalize the result
\rightarrow Guard bits (ALU reg larger, padd with 0) to avoid losing precision on numbers that are very close (1.0000..*2^1-1.1111..2*0)
- Multiplication/division principle simpler
\rightarrow multiply/divide significands, add/sub exponents, detect over/under-flow

Complex Functions

- Lagrange polynomials

$$
P_{n}(x)=\sum_{i=0}^{n}\left[f\left(x_{i}\right) \prod_{k=0, k \neq i}^{n} \frac{\left(x-x_{k}\right)}{\left(x_{i}-x_{k}\right)}\right]
$$

- Taylor series

$$
f(x)=\sum_{i=0}^{\infty} f^{(i)}\left(x_{0}\right) \frac{\left(x-x_{0}\right)^{i}}{i!}
$$

■ Other numerical methods that converge rapidly

- Special (int): random generator (linear congruence generator).
- Simple
- But correlation between succìéssive | $\left.x_{i}+c\right)$ values |
| :---: |
- High bits of better quality

Numerical Precision

- Evalutation of precision
- Absolute: $\quad x \pm \alpha$
- Relative: $\quad x *(1 \pm \delta)$
- Be careful with division by very small values: can amplify numerical errors
- Numerical justification for Gauss' method to solve equations.

