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Introduction

■ Base 10
■ Infinite
■ Exact

■ Base 2
■ Finite representation
■ Rounding - overflow

Natural/Real Numbers Numbers in Computers

In this lecture
■ How to represent numbers – range, encoding
■ Arithmetics
■ How to use these numbers
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Examples

■ Overflow:
main() {
 printf(“%d\n”, 200*300*400*500);
}

outputs -884901888
main() {
 printf(“%lld\n”,200LL*300LL*400LL*500LL);
}

outputs 12 000 000 000
■ Loss of precision:
(3.14+1e20)-1e20 == 0.0
3.14+(1e20-1e20) == 3.14
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Information Storage

■ Basic unit is the byte (=8 bits).

■ Note1: beware of addressing.
■ Note2: allocated memory is 32/64 bits aligned.

Cdeclaration Typical 32bit Compaq Alpha
char  1 1
short int 2 2
int  4 4
long int  4 8
char*  4 8
float  4 4
double  8 8
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Integer Coding

■ Unsigned integers:
■ Signed integers:

with w being the size of a word (in bits), x the bits.
Coding for signed integers is called 2 complement.

■ The highest bit codes the sign.
■ Overflow rounds up

UB= ∑
i=0

i=w−1

x i 2
i

SB=−xw−1 2w−1 ∑
i=0

i=w−2

x i 2
i
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Basic Arithmetics

■ Logical operations (bitwise): & | ^ ~ >> <<
■ Arithmetics operations: + - * /
■ Careful with shifts on signed integers.
■ Do not mess up with boolean operations (&& ||).
■ Properties:

 Operations are the same on int/unsigned int.
 Commutativity, associativity, distributivity, identities, 

annihilator, cancellation, idempotency, absorption, De 
Morgan laws.

 Identity: -a == ~a + 1
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Arithmetics Cont.

■ Applications:
 Machine code of + - * / same for int/uint
 Howto set/unset/read bits? Swap example.

■ Integer convertion == type casting
 Padding for the sign (int)
 Convertion is modulo the size of the new int.
 Beware of implicit conversions in C.

■ Optimizations for some operations:
 2*a == a+a == a << 1, a/2 == a >> 1
 a *= 2^i == x <<= i, a /= 2^i == x >>= i
 a % 2^i == a & ((1 << i)-1), 2^i == 1 << i
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Hexadecimal Notation

■ Get used to know by heart first powers of 2.
■ Very useful to manipulate bits.

 A digit codes 4 bits (0..F, ie, 0..15) = 16 numbers.
 0..9, obvious. A..F = 10..15.
 C notation 0x.. for hexadecimal.

■ Examples:
 0xa57e: (10=8+2)(5=4+1)(7=4+2+1)(14=8+4+2)

1010 0101 0111 1110
 Useful to know 0xf 0x7 0x3.
 Individual bits accessed by shifts and masks.
 uint: 0..0xffffffff, int: 0x80000000..0x7fffffff
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Endianness: Beware

■ When I write “0xa57e”, it is a notation for humans. 
In base 2, it is “1010 0101 0111 1110”.

■ Little endian: stored as 0111111010100101
Big endian: stored as 1010010101111110
in memory, at the bit level on the chip.

■ It does not matter in C, you never need to pay 
attention to it except:
 For bitmap manipulation
 Device drivers
 Network transferts
 When the bit ordering matters where you are writing
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Example

main() {
 int a = 0xf0000000;
 char *c = &a;
 printf("%x\n", *c);
}

■ Intel: outputs 0
■ Sun: outputs fffffff0

Why?

■ What if a = 0x70000000 ?
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Floats

■ How to code a real number with bits?
 Finite precision -> approximation
 Represent very small and very large numbers -> 

“density” of encoding varies.
■ Scientific notation used, eg (base 10), 3.141e12

but in base 2.
■ Fractional numbers (bad for large numbers)

 Decimal:
 Binary:

d=∑
i=−n

m

10i d i

b=∑
i=−n

m

2i bi



13

IEEE FP

■ IEEE floating point standard


 Number of bits (float/double) for s: 1, m: 23/52, e: 8/11
 Normalized and denormalized values
 Bit fields: s, m, e to code respectively S, M, E 

■ Normalized values (e!=0, e!=111...)
 E=e-bias (-126..127/-1022..1023)
 M=1+f

➔ Trick for more precision: implied leading 1 representation.

V=−1s M 2E

1M2
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 IEEE FP Cont.

■ Denormalized values (E: only 0s or 1s)
 e=0,

➔ Coding compensates for M not having an implied leading 1.
➔ M=f
➔ Coding for numbers very close to 0 and 0 (+0.0,-0.0)

 e=111..
➔ f=0, (signed) infinite
➔ f!=0, NaN

■ Properties
 +0.0 == 0
 If interpreted as unsigned integers, floats can be 

sorted (+x ascending, -x descending)

E=1−bias , bias=2k−1−1
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Properties

■ Operations not associative
■ Not always inverse (infinity)

Important for compilers and programmers.
■ Loss of precision.
■ Example: x=a+b+c; y=b+c+d;

Optimize or not?
■ Monotonicity 
■ Cast:

 int2float rounded, double2float rounded/overflow
 int/float2double OK
 float/double2int truncated/rounded/overflow

ab⇒axbx
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IA32: The Good and The Bad

■ Good: uses internally 80 bit extended registers for 
more precision.

■ Bad:
 Stack based FP
 Side effects like changing values when loading or 

saving numbers in memory whereas register transferts 
are OK. Memory accesses may imply rounding (to float 
or double).
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Implementation of Functions

■ Integers
 Addition/substraction simple
 Multiplication based on
r=a*b: r=0; while(b) do { if (b&1) r+=a; a+=a; b>>=1; }

 Division iterative like pen and paper
■ Floats

 Addition/substraction require
➔ Check for 0, align the significands, +/-, normalize the result
➔ Guard bits (ALU reg larger, padd with 0) to avoid losing precision on 

numbers that are very close (1.0000..*2^1-1.1111..2*0)
 Multiplication/division principle simpler

➔ multiply/divide significands, add/sub exponents, detect over/under-flow
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Complex Functions

■ Lagrange polynomials

■ Taylor series

■ Other numerical methods that converge rapidly

■ Special (int): random generator (linear congruence 
generator).
 Simple
 But correlation between successive values
 High bits of better quality

Pn x =∑
i=0

n

[ f x i ∏
k=0, k≠i

n x−x k
 x i−xk

]

f x =∑
i=0

∞

f ix0
x−x0

i

i !

x i1=ax icmod m
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Numerical Precision

■ Evalutation of precision
 Absolute: 
 Relative: 

■ Be careful with division by very small values: can 
amplify numerical errors
 Numerical justification for Gauss' method to solve 

equations.

x±
x∗1±


