
1

Algorithms and Architecture 1

Representing and Manipulating Numbers

Alexandre David

2

Outline

■ Introduction
■ Information storage
■ Integer coding
■ Basic arithmetics
■ Hexadecimal notation
■ Endianness
■ Floats
■ IEEE FP
■ Implementation of functions
■ Numerical Precision

3

Introduction

■ Base 10
■ Infinite
■ Exact

■ Base 2
■ Finite representation
■ Rounding - overflow

Natural/Real Numbers Numbers in Computers

In this lecture
■ How to represent numbers – range, encoding
■ Arithmetics
■ How to use these numbers

4

Examples

■ Overflow:
main() {
 printf(“%d\n”, 200*300*400*500);
}

outputs -884901888
main() {
 printf(“%lld\n”,200LL*300LL*400LL*500LL);
}

outputs 12 000 000 000
■ Loss of precision:
(3.14+1e20)-1e20 == 0.0
3.14+(1e20-1e20) == 3.14

5

Information Storage

■ Basic unit is the byte (=8 bits).

■ Note1: beware of addressing.
■ Note2: allocated memory is 32/64 bits aligned.

Cdeclaration Typical 32bit Compaq Alpha
char 1 1
short int 2 2
int 4 4
long int 4 8
char* 4 8
float 4 4
double 8 8

6

Integer Coding

■ Unsigned integers:
■ Signed integers:

with w being the size of a word (in bits), x the bits.
Coding for signed integers is called 2 complement.

■ The highest bit codes the sign.
■ Overflow rounds up

UB= ∑
i=0

i=w−1

x i 2
i

SB=−xw−1 2w−1 ∑
i=0

i=w−2

x i 2
i

7

Basic Arithmetics

■ Logical operations (bitwise): & | ^ ~ >> <<
■ Arithmetics operations: + - * /
■ Careful with shifts on signed integers.
■ Do not mess up with boolean operations (&& ||).
■ Properties:

 Operations are the same on int/unsigned int.
 Commutativity, associativity, distributivity, identities,

annihilator, cancellation, idempotency, absorption, De
Morgan laws.

 Identity: -a == ~a + 1

8

Arithmetics Cont.

■ Applications:
 Machine code of + - * / same for int/uint
 Howto set/unset/read bits? Swap example.

■ Integer convertion == type casting
 Padding for the sign (int)
 Convertion is modulo the size of the new int.
 Beware of implicit conversions in C.

■ Optimizations for some operations:
 2*a == a+a == a << 1, a/2 == a >> 1
 a *= 2^i == x <<= i, a /= 2^i == x >>= i
 a % 2^i == a & ((1 << i)-1), 2^i == 1 << i

9

Hexadecimal Notation

■ Get used to know by heart first powers of 2.
■ Very useful to manipulate bits.

 A digit codes 4 bits (0..F, ie, 0..15) = 16 numbers.
 0..9, obvious. A..F = 10..15.
 C notation 0x.. for hexadecimal.

■ Examples:
 0xa57e: (10=8+2)(5=4+1)(7=4+2+1)(14=8+4+2)

1010 0101 0111 1110
 Useful to know 0xf 0x7 0x3.
 Individual bits accessed by shifts and masks.
 uint: 0..0xffffffff, int: 0x80000000..0x7fffffff

10

Endianness: Beware

■ When I write “0xa57e”, it is a notation for humans.
In base 2, it is “1010 0101 0111 1110”.

■ Little endian: stored as 0111111010100101
Big endian: stored as 1010010101111110
in memory, at the bit level on the chip.

■ It does not matter in C, you never need to pay
attention to it except:
 For bitmap manipulation
 Device drivers
 Network transferts
 When the bit ordering matters where you are writing

11

Example

main() {
 int a = 0xf0000000;
 char *c = &a;
 printf("%x\n", *c);
}

■ Intel: outputs 0
■ Sun: outputs fffffff0

Why?

■ What if a = 0x70000000 ?

12

Floats

■ How to code a real number with bits?
 Finite precision -> approximation
 Represent very small and very large numbers ->

“density” of encoding varies.
■ Scientific notation used, eg (base 10), 3.141e12

but in base 2.
■ Fractional numbers (bad for large numbers)

 Decimal:
 Binary:

d=∑
i=−n

m

10i d i

b=∑
i=−n

m

2i bi

13

IEEE FP

■ IEEE floating point standard

 Number of bits (float/double) for s: 1, m: 23/52, e: 8/11
 Normalized and denormalized values
 Bit fields: s, m, e to code respectively S, M, E

■ Normalized values (e!=0, e!=111...)
 E=e-bias (-126..127/-1022..1023)
 M=1+f

➔ Trick for more precision: implied leading 1 representation.

V=−1s M 2E

1M2

14

 IEEE FP Cont.

■ Denormalized values (E: only 0s or 1s)
 e=0,

➔ Coding compensates for M not having an implied leading 1.
➔ M=f
➔ Coding for numbers very close to 0 and 0 (+0.0,-0.0)

 e=111..
➔ f=0, (signed) infinite
➔ f!=0, NaN

■ Properties
 +0.0 == 0
 If interpreted as unsigned integers, floats can be

sorted (+x ascending, -x descending)

E=1−bias , bias=2k−1−1

15

Properties

■ Operations not associative
■ Not always inverse (infinity)

Important for compilers and programmers.
■ Loss of precision.
■ Example: x=a+b+c; y=b+c+d;

Optimize or not?
■ Monotonicity
■ Cast:

 int2float rounded, double2float rounded/overflow
 int/float2double OK
 float/double2int truncated/rounded/overflow

ab⇒axbx

16

IA32: The Good and The Bad

■ Good: uses internally 80 bit extended registers for
more precision.

■ Bad:
 Stack based FP
 Side effects like changing values when loading or

saving numbers in memory whereas register transferts
are OK. Memory accesses may imply rounding (to float
or double).

17

Implementation of Functions

■ Integers
 Addition/substraction simple
 Multiplication based on
r=a*b: r=0; while(b) do { if (b&1) r+=a; a+=a; b>>=1; }

 Division iterative like pen and paper
■ Floats

 Addition/substraction require
➔ Check for 0, align the significands, +/-, normalize the result
➔ Guard bits (ALU reg larger, padd with 0) to avoid losing precision on

numbers that are very close (1.0000..*2^1-1.1111..2*0)
 Multiplication/division principle simpler

➔ multiply/divide significands, add/sub exponents, detect over/under-flow

18

Complex Functions

■ Lagrange polynomials

■ Taylor series

■ Other numerical methods that converge rapidly

■ Special (int): random generator (linear congruence
generator).
 Simple
 But correlation between successive values
 High bits of better quality

Pn x =∑
i=0

n

[f x i ∏
k=0, k≠i

n x−x k
 x i−xk

]

f x =∑
i=0

∞

f ix0
x−x0

i

i !

x i1=ax icmod m

19

Numerical Precision

■ Evalutation of precision
 Absolute:
 Relative:

■ Be careful with division by very small values: can
amplify numerical errors
 Numerical justification for Gauss' method to solve

equations.

x±
x∗1±

