

| Algorithms and Architecture I

Red-Black Trees

Why?

- Binary search tree perform in O(height) so:
 - if the height is large, this is bad
 - large height if unbalanced tree
 - keep the tree balanced
- Red-black trees = binary search tree with a color per node (red/black) that is approximately balanced.

Height

- ► Height $\leq 2\lg(n+1)$.
- > Proof:
 - subtrees of x contain at least $2^{bh(x)}-1$ nodes (induction on the height of x).
 - $-bh(root) \ge h/2$ so $n \ge 2^{h/2} 1$
 - $-\log: h \le 2\lg(n+1)$

Deletion

- Deletion of a red node is easy.
- Fix deletion of a black node.
- Algorithm:
 - find node to delete
 - delete it as in binary search trees
 - node to be deleted has at most one child
 - if we delete a **red node**, the tree is still a RBT
 - assume we delete a **black node**
 - x: child of the deleted node

Deletion – case trivial

If x is red, color it black and stop,

else x is black, mark it double black.

> If x's sibling is red.

- > x stays at same black height.
- Case 2b, B will be colored to black.

> If x's sibling is black, x's parent is black, ...

> If x's sibling is black, x's parent is red, ...

If x's sibling is black, ...

- > x stays at same black height.
- Case 4.

If x's sibling is black, ...

> Stop.