Algorithms and Architecture I

Red-Black Trees




i Why?

> Binary search tree perform in O(height) so:

- if the height is large, this is bad
- large height if unbalanced tree

- keep the tree balanced

- Red-black trees = binary search tree with a
color per node (red/black) that is
approximately balanced.




i) Height

> Height < 2lg(n+1).
> Proof:

- subtrees of x contain at least 2”"“'—1 nodes
(induction on the height of x).

— bh(root) =2 h/2 so n=2"*—1
- log: h < 2lg(n+1)




“|' Deletion

> Deletion of a red node is easy.
> Fix deletion of a black node.
> Algorithm:
— find node to delete
- delete it as in binary search trees

— node to be deleted has at most one child

- if we delete a red node, the tree is still a RBT

- assume we delete a black node

— x: child of the deleted node




Deletion — case trivial

> If x is red, color it black and stop,

?/ 1/

> else x 18 black mark it double black.




Deletion — case 1

> If x's sibling is red.

> x stays at same black height.
> Case 2b, B will be colored to black.




Deletion — case 2

> If x's sibling is black, x's parent is black, ...

> Decrease x black height.
> If x's sibling i1s black, x's parent is red, ...




Deletion — case 3

> If x's sibling is black, ...

B

ok

D

Ly

> x stays at same black height.
- Case 4.




Deletion — case 4

> If x's sibling is black, ...

> Stop.




