Recurrences - Suggested Solutions

Alexandre David

4.1-1 By induction on n, assuming $T(k)=O(\lg (k))$ for $k \leq\lceil n / 2\rceil$:

$$
\begin{aligned}
T(n) & \leq c \lg (\lceil n / 2\rceil)+1 \\
& \leq c \lg (n / 2+1)+1 \\
& \leq \operatorname{clg}(n+2)-c+1
\end{aligned}
$$

We want this expression to be $\leq c \lg n$. Let's see if it is possible and for which c :

$$
\begin{array}{ll}
& c \lg (n+2)-c+1 \leq c \lg n \\
\Leftrightarrow & 1 \leq c(\lg n-\lg (n+2)+1) \\
\Leftrightarrow & 1 \leq c\left(\lg \frac{n}{n+2}+1\right)
\end{array}
$$

We need a c such that this holds for all $n \geq n_{0}$ from which we can apply the induction. We note that $\lg \frac{n}{n+2}$ is monotonic increasing, so if the expression holds for n_{0} (yet to find), then it will hold for $n \geq n_{0}$. For $n=2$ it does not work: $1+\lg (2 / 4)=0$; for $n=3: 1+\lg (3 / 5)=0.26 \ldots$, we can find a c. For $c \geq \frac{1}{1+\lg (3 / 5)}$ we have:

$$
T(n) \leq c \lg n
$$

which complete the proof of the induction step. The base case is problematic as on page 64: check for $n=2$ and $n=3$ assuming $T(1)=1$ and choose c large enough. Conclude by induction that $T(n)=O(\lg (n))$ for all $n \geq 2$.
4.1-2 By induction on n assuming $T(k)=\Omega(k \lg k)$ holds for $k \leq\lfloor n / 2\rfloor$:

$$
\begin{aligned}
T(n) & \geq 2 c(\lfloor n / 2\rfloor) \lg (\lfloor n / 2\rfloor)+n \\
& \geq 2 c(n / 2-1) \lg (n / 2-1)+n \\
& \geq c(n-2) \lg (n-2)-c(n-2)+n \\
& \geq c(n-2) \lg (n / 2)-c(n-2)+n(\text { for } n \geq 4) \\
& \geq c(n-2) \lg n-2 c(n-2)+n \\
& \geq c n \lg n-2 c \lg n-2 c(n-2)+n \\
& \geq c n \lg n+n(1-2 c)+4 c-2 c \lg n
\end{aligned}
$$

We choose $n=1 / 3$ and we examine $f(x)=3 *(x(1-2 c)+4 c-2 c \lg x)=$ $x+4-2 \lg x . f^{\prime}(x)=1-2 / x \geq 0 \Leftrightarrow x \geq 2$.

$$
\left\{\begin{array}{l}
f(2)=2+4-2>0 \tag{1}\\
f^{\prime}(x) \geq 0 \text { for } x \geq 2 \\
f \text { is continuous }
\end{array} \quad \Rightarrow f(x) \geq 0 \text { for } x \geq 2\right.
$$

Thus for $n \geq 2$ and $c=1 / 3$ we have $n(1-2 c)+4 c-2 c \lg n \geq 0$ and therefore $T(n) \geq c n \lg n$. Base case $n=1: T(1) \geq 0$. Conclude by induction that $T(n)=\Omega(n \lg n)$ for $n \geq 1$. Use theorem 3.1 to conclude $T(n)=\Theta(n \lg n)$.

