

### Recurrences

#### **Alexandre David**





- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
- Methods for solving recurrences:
  - Substitution method
  - Recursion-tree method
  - Master method



#### ■ Two steps:

- Guess the form of the solution
- Use induction to find the constants and prove that the solution works
- Problem: come up with a good guess
  - Use recursion trees
  - Correct the guess



- Each node represents the cost of a single subproblem.
- Useful when it describes the running time of a divide-and-conquer algorithm.
- Used to generate a good guess or as a direct proof of a solution to a recurrence.
- Example:  $T(n)=3T(n/4)+\theta(n^2)$ 
  - Construct recursion tree to obtain a guess
  - Use the substitution method for the proof



■ For recurrences of the form T(n)=aT(n/b)+f(n)where  $a \ge 1$  and b > 1 are constants and f(n) is asymptotically positive.

Theorem: T(n) can be bounded as follows

- if  $f(n) = O(n^{\log_b a \epsilon})$  for some  $\epsilon > 0$  then  $T(n) = \Theta(n^{\log_b a})$
- if  $f(n) = \Theta(n^{\log_b a})$  then  $T(n) = \Theta(n^{\log_b a} lgn) = \Theta(f(n) lgn)$
- if  $f(n) = \Omega(n^{\log_b a + \epsilon})$  for some  $\epsilon > 0$  and if  $af(n/b) \le cf(n)$  for some c < 1 then  $T(n) = \Theta(f(n))$

Intuition: compare f(n) to n<sup>log<sub>b</sub>a</sup>, the larger is the solution. Smaller: polynomially smaller by a factor of n<sup>c</sup>. Larger: polynomially larger + "regularity" condition.

## Master Method: Examples

■ T(n)=9T(n/3)+n a=9, b=3, f(n)=n  $n^{\log_b a}=n^{\log_3 9}=n^2$ Case 1 with ε=1, we conclude  $T(n)=\Theta(n^2)$ .

■ T(n)=T(2n/3)+1 a=1, b=2/3, f(n)=1  $n^{\log_b a}=n^{\log_{3/2} 1}=n^0=1$ Case 2, we conclude  $T(n)=\Theta(\lg n)$ .

■  $T(n)=3T(n/4)+n\lg n$   $a=3, b=4, f(n)=n\lg n$ Case 3, check regularity:  $af(n/b)=3(n/4)\lg(n/4)\leq(3/4)n\lg n=cf(n).$ We conclude  $T(n)=\Theta(n\lg n).$ 



# Master Method: Example

# ■ $T(n)=2T(n/2)+n \lg n$ $a=2, b=2, f(n)=n \lg n, n^{\log_b a}=n$ Case 3?

 $f(n)=n \lg n$  is not polynomially larger than n: no  $\varepsilon > 0$ such that  $n \lg n = \Omega(n^{1+\varepsilon})$ .

We cannot apply the master theorem.





#### • Proof for a sub-domain: $n=1,b,b^2,...$

- compute the cost with a recursion tree (lemma 4.2) leaves:  $\Theta(n^{\log_b a})$ +tree:  $\sum_{j=0}^{\log_b n-1} a^j f(n/b^j)$
- bound the 2<sup>nd</sup> term with 3 cases (as in the theorem) (lemma 4.3)
- evaluate the sum (asymptotically) using lemma 4.3.
- Extend the proof for any n.