
1

Algorithms and Architecture 1

Recurrences

Alexandre David

2

Recurrences

■ A recurrence is an equation or inequality that
describes a function in terms of its value on
smaller inputs.

■ Methods for solving recurrences:
 Substitution method
 Recursion-tree method
 Master method

3

The Substitution Method

■ Two steps:
 Guess the form of the solution
 Use induction to find the constants and prove that the

solution works
■ Problem: come up with a good guess

 Use recursion trees
 Correct the guess

4

The Recursion-Tree Method

■ Each node represents the cost of a single
subproblem.

■ Useful when it describes the running time of a
divide-and-conquer algorithm.

■ Used to generate a good guess or as a direct
proof of a solution to a recurrence.

■ Example: T(n)=3T(n/4)+θ(n2)
 Construct recursion tree to obtain a guess
 Use the substitution method for the proof

5

The Master Method

■ For recurrences of the form T(n)=aT(n/b)+f(n)
where a1 and b>1 are constants and f(n) is
asymptotically positive.

■ Theorem: T(n) can be bounded as follows
 if for some >0 then
 if then
 if for some >0 and if af(n/b)cf(n) for

some c<1 then

■ Intuition: compare f(n) to , the larger is the
solution. Smaller: polynomially smaller by a factor
of . Larger: polynomially larger + “regularity”
condition.

f n=O nlogb a− T n=nlogb a
f n=nlogb a T n=nlogb a lg n= f n lg n
f n=nlogb a

T n= f n

nlogb a

n

6

Master Method: Examples

■ T(n)=9T(n/3)+n
a=9, b=3, f(n)=n
Case 1 with =1, we conclude T(n)=(n2).

■ T(n)=T(2n/3)+1
a=1, b=2/3, f(n)=1
Case 2, we conclude T(n)=(lg n).

■ T(n)=3T(n/4)+nlgn
a=3, b=4, f(n)=nlgn
Case 3, check regularity:
af(n/b)=3(n/4)lg(n/4)(3/4)nlgn=cf(n).
We conclude T(n)=nlgn).

nlogb a=nlog3 9=n2

nlogb a=nlog3/2 1=n0=1

nlogb a=nlog4 3=O n0.793
f n=nlogb a

7

Master Method: Example

■ T(n)=2T(n/2)+nlgn
a=2, b=2, f(n)=nlgn,
Case 3?
f(n)=nlgn is not polynomially larger than n: no 

such that nlgn=(n1+
We cannot apply the master theorem.

nlogb a=n

8

Master Theorem: Proof Idea

■ Proof for a sub-domain: n=1,b,b2,...
 compute the cost with a recursion tree (lemma 4.2)

leaves:
+tree:

 bound the 2nd term with 3 cases (as in the theorem)
(lemma 4.3)

 evaluate the sum (asymptotically) using lemma 4.3.
■ Extend the proof for any n.

nlogb a
∑ j=0

logb n−1
a j f n /b j

