Algorithms and Architecture 1

Recurrences

Alexandre David

Recurrences

- A recurrence is an equation or inequality that describes a function in terms of its value on smaller inputs.
- Methods for solving recurrences:
- Substitution method
- Recursion-tree method
- Master method

The Substitution Method

- Two steps:
- Guess the form of the solution
- Use induction to find the constants and prove that the solution works
- Problem: come up with a good guess
- Use recursion trees
- Correct the guess

The Recursion-Tree Method

- Each node represents the cost of a single subproblem.
- Useful when it describes the running time of a divide-and-conquer algorithm.
- Used to generate a good guess or as a direct proof of a solution to a recurrence.
- Example: $T(n)=3 T(n / 4)+\theta\left(n^{2}\right)$
- Construct recursion tree to obtain a guess
- Use the substitution method for the proof

The Master Method

- For recurrences of the form $T(n)=a T(n / b)+f(n)$ where $a \geq 1$ and $b>1$ are constants and $f(n)$ is asymptotically positive.
- Theorem: $T(n)$ can be bounded as follows
- if $f(n)=O\left(n^{\log _{a} a-\epsilon}\right)$ for some $\varepsilon>0$ then $T(n)=\Theta\left(n^{\log _{g} a}\right)$
- if $f(n)=\Theta\left(n^{\log _{g} a}\right)$ then $T(n)=\Theta\left(n^{\log _{\Delta} a} \lg n\right)=\Theta(f(n) \lg n)$
- if $f(n)=\Omega\left(n^{\log _{, a+\epsilon}}\right)$ for some $\varepsilon>0$ and if $a f(n / b) \leq c f(n)$ for some $c<1$ then $T(n)=\Theta(f(n))$
- Intuition: compare $\mathrm{f}(\mathrm{n})$ to $n^{\log _{b} a}$, the larger is the solution. Smaller: polynomially smaller by a factor of n^{ϵ}. Larger: polynomially larger + "regularity" condition.

Master Method: Examples

- $T(n)=9 T(n / 3)+n$
$a=9, b=3, f(n)=n$

$$
n^{\log _{b} a}=n^{\log _{3} 9}=n^{2}
$$

Case 1 with $\varepsilon=1$, we conclude $T(n)=\Theta\left(n^{2}\right)$.

- $T(n)=T(2 n / 3)+1$
$a=1, b=2 / 3, f(n)=1$

$$
n^{\log _{b} a}=n^{\log _{3 / 2} 1}=n^{0}=1
$$

Case 2, we conclude $T(n)=\Theta(\lg n)$.

- $T(n)=3 T(n / 4)+n \lg n$

$$
\begin{aligned}
n^{\log _{b} a}=n^{\log _{4} 3} & =O\left(n^{0.793}\right) \\
f(n) & =\Omega\left(n^{\log _{b} a+\epsilon}\right)
\end{aligned}
$$

Case 3, check regularity:
$a f(n / b)=3(n / 4) \lg (n / 4) \leq(3 / 4) n \lg n=c f(n)$.
We conclude $T(n)=\Theta(n \lg n)$.

Master Method: Example

- $T(n)=2 T(n / 2)+n \lg n$
$a=2, b=2, f(n)=n \lg n, \quad n^{\log _{b} a}=n$
Case 3?
$f(n)=n \lg n$ is not polynomially larger than n : no $\varepsilon>0$ such that $n \lg n=\Omega\left(\mathrm{n}^{1+\varepsilon}\right)$.
We cannot apply the master theorem.

Master Theorem: Proof Idea

- Proof for a sub-domain: $n=1, b, b^{2}, \ldots$
- compute the cost with a recursion tree (lemma 4.2)

- bound the $2^{\text {nd }}$ term with 3 cases (as in the theorem) (lemma 4.3)
- evaluate the sum (asymptotically) using lemma 4.3.
- Extend the proof for any n.

