Algorithms and Architecture 1

Recurrences

Alexandre David

4



W Recurrences

m A recurrence Is an equation or inequality that
describes a function in terms of its value on
smaller inputs.

®m Methods for solving recurrences:
+ Substitution method
+ Recursion-tree method
+ Master method




The Substitution Method

B Two steps:
« Guess the form of the solution
+ Use induction to find the constants and prove that the
solution works
® Problem: come up with a good guess
« Use recursion trees
« Correct the guess




The Recursion-Tree Method

®m Each node represents the cost of a single
subproblem.

m Useful when it describes the running time of a
divide-and-conquer algorithm.

m Used to generate a good guess or as a direct
proof of a solution to a recurrence.

m Example: T(n)=3T(n/4)+6(n°)
« Construct recursion tree to obtain a guess
+ Use the substitution method for the proof




The Master Method

B For recurrences of the form T(n)=aT(n/b)+f(n)
where a>1 and b>1 are constants and f(n) Is
asymptotically positive.

B Theorem: T(n) can be bounded as follows
« if f(n)=0(n"*" ) for some €>0then T (n)=0(n"*")
o if F(n)=0(n"*") then T(n)=0(n"*‘Ign)=0(f(n)lgn)
o if f(n)=Q(n"™"") for some >0 and if af(n/b)<cf(n) for
some c<lthen T (n)=0(f(n))
® Intuition: compare f(n) to 7, the larger is the
solution. Smaller: polynomially smaller by a factor
of n°. Larger: polynomially larger + “regularity”
condition.




Master Method: Examples

B T(n)=9T(n/3)+n | e
a=9, b=3, f(n)=n n>=n " =n
Case 1 with €=1, we conclude T(n)=0(n?).

B T(n)=T(2n/3)+1 | o

a=1, b=2/3, f(n)=1 ntl=pn® =p"=1
Case 2, we conclude T(n)=0(lg n).
 T(M)=3T(n/4)+nlgn 1 >'=n"*"=0 n?j;;e
a=3, b=4, f(n)=nign f(n)=Q(n=""")
Case 3, check regularity:
af(n/b)=3(n/4)lg(n/4)<(3/4)nlgn=cf(n).

We conclude T(n)=G(nlgn).

JE



Master Method: Example

B T(n)=2T(n/2)+nign 1

a=2, b=2, f(n)=nlgn, n '=n

Case 37

f(n)=nlgn 1s not polynomially larger than n: no €>0
such that nlgn=Q(n*™).

We cannot apply the master theorem.

o



Master Theorem: Proof Id

ea

B Proof for a sub-domain: n=1,b,b?,...
« compute the cost with a recursion tree (lemma 4.2)
leaves: O (n°*)
log,n—1 i i
+tree: 2., @ f(n/b))
+ bound the 2™ term with 3 cases (as in the theorem)
(lemma 4.3)

+ evaluate the sum (asymptotically) using lemma 4.3.

B Extend the proof for any n.

e



