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Recurrences

■ A recurrence is an equation or inequality that 
describes a function in terms of its value on 
smaller inputs.

■ Methods for solving recurrences:
 Substitution method
 Recursion-tree method
 Master method
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The Substitution Method

■ Two steps:
 Guess the form of the solution
 Use induction to find the constants and prove that the 

solution works
■ Problem: come up with a good guess

 Use recursion trees
 Correct the guess
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The Recursion-Tree Method

■ Each node represents the cost of a single 
subproblem.

■ Useful when it describes the running time of a 
divide-and-conquer algorithm.

■ Used to generate a good guess or as a direct 
proof of a solution to a recurrence.

■ Example: T(n)=3T(n/4)+θ(n2)
 Construct recursion tree to obtain a guess
 Use the substitution method for the proof
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The Master Method

■ For recurrences of the form T(n)=aT(n/b)+f(n)
where a1 and b>1 are constants and f(n) is 
asymptotically positive.

■ Theorem: T(n) can be bounded as follows
 if for some >0 then
 if then
 if for some >0 and if af(n/b)cf(n) for 

some c<1 then

■ Intuition: compare f(n) to , the larger is the 
solution. Smaller: polynomially smaller by a factor 
of    . Larger: polynomially larger + “regularity” 
condition.

f n=O nlogb a− T n=nlogb a
f n=nlogb a T n=nlogb a lg n= f n lg n
f n=nlogb a

T n= f n

nlogb a

n
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Master Method: Examples

■ T(n)=9T(n/3)+n
a=9, b=3, f(n)=n
Case 1 with =1, we conclude T(n)=(n2).

■ T(n)=T(2n/3)+1
a=1, b=2/3, f(n)=1
Case 2, we conclude T(n)=(lg n).

■ T(n)=3T(n/4)+nlgn
a=3, b=4, f(n)=nlgn
Case 3, check regularity:
af(n/b)=3(n/4)lg(n/4)(3/4)nlgn=cf(n).
We conclude T(n)=nlgn).

nlogb a=nlog3 9=n2

nlogb a=nlog3/2 1=n0=1

nlogb a=nlog4 3=O n0.793
f n=nlogb a
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Master Method: Example

■ T(n)=2T(n/2)+nlgn
a=2, b=2, f(n)=nlgn,
Case 3?
f(n)=nlgn is not polynomially larger than n: no  

such that nlgn=(n1+
We cannot apply the master theorem.

nlogb a=n
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Master Theorem: Proof Idea

■ Proof for a sub-domain: n=1,b,b2,...
 compute the cost with a recursion tree (lemma 4.2)

leaves:
+tree:

 bound the 2nd term with 3 cases (as in the theorem) 
(lemma 4.3)

 evaluate the sum (asymptotically) using lemma 4.3.
■ Extend the proof for any n.

nlogb a
∑ j=0

logb n−1
a j f n /b j


