Algorithms and Architecture 1

Introduction to Algorithms

Alexandre David

- Notion of algorithms, GCD example.
- Algorithmic problem solving.
- Problem types.
- Sorting example.
- Numerical example.
- Analyzing algorithms.

Notion of Algorithms

- Why study algorithms?
- What is an algorithm?
- Example: GCD
- Known example
- Nonambiguity requirement
- Define range of inputs
- Different representations of the algorithm
- Several algorithm for the same problem
- Different ideas, different running speeds

GCD: The Problem

- Greatest common divisor of 2 nonnegative, not both zero integers, denoted $\operatorname{gcd}(\mathrm{m}, \mathrm{n})$, defined as the largest integer that divides both \mathbf{m} and n with a remainder of zero.
- Algorithms:
- Consecutive integer checking
- Euclid's algorithm
- Prime decomposition

Consecutive Integer Checking

■ Idea: solution cannot be greater than $\min (m, n)$. Let $t=m i n\{m, n\}$. Check t and try again by decreasing t.
■ Correctness: greatest? Termination?
■ Efficiency: running time?
Step 1: assign $\min \{m, n\}$ to t.
Step 2: divide m by t. If remainder $=0$ then step 3, otherwise step 4 .
Step 3: divide n by t. If remainder $=0$ return t, otherwise step 4 .
Step 4: decrease t by 1 , go to step 2.

Euclid's Algorithms

- Idea: apply repeadly $\operatorname{gcd}(m, n)=\operatorname{gcd}(n, m \bmod n)$ until m mod n is equal to zero (stop when reach $\operatorname{gcd}(m, 0)=m)$. Ex: $\operatorname{gcd}(60,24)=\operatorname{gcd}(24,12)=\operatorname{gcd}$ $(12,0)=12$.
Algorithm Euclid(m,n)
// Computes gcd(m,n) by Euclid's algorithm
// Input: two nonnegative, non both zero integers m and n
// Output: GCD of m and n
while n != 0 do

$$
\begin{aligned}
& r:=m \bmod n \\
& m:=n \\
& n:=r
\end{aligned}
$$

return m

Prime Decomposition

- Idea: decomposition into primes and pick the common factors.
Step 1: find the prime factors of m.
Step 2: find the prime factors of n.
Step 3: identify all the common factors (if p is a common factor occuring p_{m} and p_{n} times in m and n, respectively, it should be repeated $\min \left\{p_{m^{\prime}} p_{n}\right\}$ times).
Step 4: Compute the product of all the common factors and return it as the result.
- Problem: Step $1 \& 2$ are sub-problems to be solved.

Algorithmic Problem Solving

- Understand the problem
- Choose exact/approximate problem solving
- Decide on appropriate data structures
- Apply an algorithm design technique
- Specify the algorithm
- Prove the correctness of the algorithm
- Analyze the algorithm - time and space efficiency
- simplicity - generality
- Code the algorithm

Problem Types

- Sorting
- Searching
- String processing
- Graph problems
- Combinatorial problems
- Geometric problems
- Numerical problems

Sorting Example

- The sorting problem:

Input: A sequence of n numbers <a1,a2,...,an>
Output: A permutation (reordering) <a $\mathrm{a}_{1}^{\prime}, \mathrm{a}_{2}^{\prime}, \ldots, \mathrm{a}_{\mathrm{n}}{ }^{\prime}>$ of the input sequence such that $\mathrm{a}_{1} \leq \mathrm{a}_{2}{ }^{\prime} \leq \ldots \leq \mathrm{a}_{\mathrm{n}}{ }^{\prime}$.

- Algorithms to solve it: insertion sort, merge sort, quicksort. Insertion sort takes $c_{1} n^{2}$ in time, merge sort takes $c_{2} n \lg (n)$. Let's sort 10^{6} elements.
- Good insertion code $2 n^{2}: 2\left(10^{6}\right)^{2} / 10^{9}=2000 s$
- Average merge sort 50nlg(n): $50^{*} 10^{6} \lg \left(10^{6}\right) /$ $10^{7}=100$ s on another CPU 100x slower.

Numerical Example

- Find x s.t. $f(x)=0$ for a
continuous monotonic function. ${ }^{\wedge}$
- Bisection algorithm: iterate on $[x, y]^{0},[x, y]^{1}$.. s.t. $f(x)<0$ and $f(y)>0$ (or opposite), reduce interval by 2 everytime.
- Newton-Raphson algorithm:
 use the derivative $x_{i+1}=x_{i}-f\left(x_{i}\right) / f^{\prime}\left(x_{i}\right)^{\wedge}$ converge much faster.
- Numerical problems with flat or exponential functions.

- Criteria:
- Correctness
- Amount of work done
- Amount of space used
- Simplicity, clarity
- Optimality
- Asymptotic behaviour
- Different analysis techniques

