Algorithms and Architecture 1

Introduction to Algorithms

Alexandre David

4

m Notion of algorithms, GCD example.
m Algorithmic problem solving.

® Problem types.

m Sorting example.

®m Numerical example.

® Analyzing algorithms.

» Notion of Algorithms

m \Why study algorithms?
® \What is an algorithm?

m Example: GCD

« Known example

« Nonambiguity requirement

Define range of inputs

Different representations of the algorithm
Several algorithm for the same problem
Different ideas, different running speeds

4

4

4

4

» GCD: The Problem

m Greatest common divisor of 2 nonnegative, not
both zero integers, denoted gcd(m,n), defined as
the largest integer that divides both m and n
with a remainder of zero.

m Algorithms:
« Consecutive integer checking
+ Euclid's algorithm
+ Prime decomposition

Consecutive Integer Checking

m |dea: solution cannot be greater than min(m,n). Let
t=min{m,n}. Check t and try again by decreasing t.

m Correctness: greatest? Termination?

m Efficiency: running time?

Step 1: assign min{m,n} to t.

Step 2: divide m by t. If remainder == 0 then step 3, otherwise step 4.
Step 3: divide n by t. If remainder == 0 return t, otherwise step 4.
Step 4. decrease t by 1, go to step 2.

e

» Euclid's Algorithms

m |dea: apply repeadly gcd(m,n) = ged(n, m mod n)
until m mod n Is equal to zero (stop when reach
gcd(m,0)=m). Ex: gcd(60,24)=gcd(24,12)=gcd

(12,0)=12.

Algorithm Euclid(m,n)
// Computes gcd(m,n) by Euclid's algorithm
// Input: two nonnegative, non both zero integers m and n
// Output: GCD of m and n
while n =0 do

r:=mmodn

m:=n

n.=r
return m

» Prime Decomposition

m |dea: decomposition into primes and pick the

common factors.

Step 1. find the prime factors of m.

Step 2: find the prime factors of n.

Step 3: identify all the common factors (if p Is a common factor
occuring p_and p_times in m and n, respectively, it should be

repeated min{p , p } times).

Step 4: Compute the product of all the common factors and return it
as the result.

® Problem: Step 1&2 are sub-problems to be solved.

o

w Algorithmic Problem Solving

m Understand the problem

®m Choose exact/approximate problem solving

m Decide on appropriate data structures

m Apply an algorithm design technique

m Specify the algorithm

B Prove the correctness of the algorithm

m Analyze the algorithm — time and space efficiency
— simplicity — generality

m Code the algorithm

e

» Problem Types

m Sorting

m Searching

® String processing

®m Graph problems

m Combinatorial problems
®m Geometric problems

® Numerical problems

w Sorting Example

® The sorting problem:
Input: A sequence of n numbers <al,az2,...,an>
Output: A permutation (reordering) <a ',a ,...,a '> of the input

sequence such that a '<a '<...<a "

m Algorithms to solve it: insertion sort, merge sort,
quicksort. Insertion sort takes (:1n2 In time, merge

sort takes ¢ _nlg(n). Let's sort 10° elements.

+ Good insertion code 2n*: 2(10°)%/10°=2000s
+ Average merge sort 50nlg(n): 50*10°lg(10°)/
10°=100s on another CPU 100x slower.
‘101

w Numerical Example

B Find x s.t. f(x)=0 for a

continuous monotonic function.

+ Bisection algorithm: 2
iterate on [x,y]%[x,y]".. s.t. f(X)<O
and f(y)>0 (or opposite), reduce
Interval by 2 everytime.

>

« Newton-Raphson algorithm: /f(/x)6 5 \
use the derivative x _=x-f(x)/f'(x) * !
converge much faster. f'(x,)
® Numerical problems with flat or ,
exponential functions. 3 R

w Analyzing Algorithms

m Criteria:
+ Correctness
« Amount of work done
« Amount of space used
Simplicity, clarity
Optimality
m Asymptotic behaviour
m Different analysis technigues

4

4

