
1

Algorithms and Architecture 1

Introduction to Algorithms

Alexandre David

2

Outline

■ Notion of algorithms, GCD example.
■ Algorithmic problem solving.
■ Problem types.
■ Sorting example.
■ Numerical example.
■ Analyzing algorithms.

3

Notion of Algorithms

■ Why study algorithms?
■ What is an algorithm?
■ Example: GCD

 Known example
 Nonambiguity requirement
 Define range of inputs
 Different representations of the algorithm
 Several algorithm for the same problem
 Different ideas, different running speeds

4

GCD: The Problem

■ Greatest common divisor of 2 nonnegative, not
both zero integers, denoted gcd(m,n), defined as
the largest integer that divides both m and n
with a remainder of zero.

■ Algorithms:
 Consecutive integer checking
 Euclid's algorithm
 Prime decomposition

5

Consecutive Integer Checking

■ Idea: solution cannot be greater than min(m,n). Let
t=min{m,n}. Check t and try again by decreasing t.

■ Correctness: greatest? Termination?
■ Efficiency: running time?

Step 1: assign min{m,n} to t.
Step 2: divide m by t. If remainder == 0 then step 3, otherwise step 4.
Step 3: divide n by t. If remainder == 0 return t, otherwise step 4.
Step 4: decrease t by 1, go to step 2.

6

Euclid's Algorithms

■ Idea: apply repeadly gcd(m,n) = gcd(n, m mod n)
until m mod n is equal to zero (stop when reach
gcd(m,0)=m). Ex: gcd(60,24)=gcd(24,12)=gcd
(12,0)=12.

Algorithm Euclid(m,n)
// Computes gcd(m,n) by Euclid's algorithm
// Input: two nonnegative, non both zero integers m and n
// Output: GCD of m and n
while n != 0 do

r := m mod n
m := n
n := r

return m

7

Prime Decomposition

■ Idea: decomposition into primes and pick the
common factors.

Step 1: find the prime factors of m.
Step 2: find the prime factors of n.
Step 3: identify all the common factors (if p is a common factor

occuring p
m
 and p

n
 times in m and n, respectively, it should be

repeated min{p
m
, p

n
} times).

Step 4: Compute the product of all the common factors and return it
as the result.

■ Problem: Step 1&2 are sub-problems to be solved.

8

Algorithmic Problem Solving

■ Understand the problem
■ Choose exact/approximate problem solving
■ Decide on appropriate data structures
■ Apply an algorithm design technique
■ Specify the algorithm
■ Prove the correctness of the algorithm
■ Analyze the algorithm – time and space efficiency

– simplicity – generality
■ Code the algorithm

9

Problem Types

■ Sorting
■ Searching
■ String processing
■ Graph problems
■ Combinatorial problems
■ Geometric problems
■ Numerical problems

10

Sorting Example

■ The sorting problem:
Input: A sequence of n numbers <a1,a2,...,an>
Output: A permutation (reordering) <a

1
',a

2
',...,a

n
'> of the input

sequence such that a
1
'a

2
'...a

n
'.

■ Algorithms to solve it: insertion sort, merge sort,
quicksort. Insertion sort takes c

1
n2 in time, merge

sort takes c
2
nlg(n). Let's sort 106 elements.

 Good insertion code 2n2: 2(106)2/109=2000s
 Average merge sort 50nlg(n): 50*106lg(106)/

107=100s on another CPU 100x slower.

11

Numerical Example

■ Find x s.t. f(x)=0 for a
continuous monotonic function.
 Bisection algorithm:

iterate on [x,y]0,[x,y]1.. s.t. f(x)<0
and f(y)>0 (or opposite), reduce
interval by 2 everytime.

 Newton-Raphson algorithm:
use the derivative x

i+1
=x

i
-f(x

i
)/f'(x

i
)

 converge much faster.
■ Numerical problems with flat or

exponential functions.

1
2

3 4

56

1

2
3

f(x)

f(x)

f'(x
1
)

12

Analyzing Algorithms

■ Criteria:
 Correctness
 Amount of work done
 Amount of space used
 Simplicity, clarity
 Optimality

■ Asymptotic behaviour
■ Different analysis techniques

