Algorithms and Architecture I

Hashing & Hash Tables




il Introduction

> A hash table is an effective data structure
for implementing dictionaries (insert,
search, and delete operations).

> Worst case access time 1s O(n) but in
practice the expected time 1s O(1).

> Idea:

- use direct addressing of arrays
- compute an index from the key (i.e. hash value)

— handle collisions with lists.




5 Direct-Address Tables

> Works well for a small set of (different) keys.

> Direct-address table (i.e. array) where each
slot corresponds to a key.

> search(T,x): return T[k]

> insert(T,x): T[key(x)]:=x

> delete(T,x): T[key(x)]:=NIL

> Problem with the range of the keys.




5 Hash Tables

> How to store if the set of keys i1s large?

> Use a hash function to map keys to slots

- but collisions are possible

- this 1is solved by chaining

> insert(T,x):
insert x at the head of T[h(key(x))]

> search(T,k):
search element with key k in T[h(k)]

> delete(T,x): delete x from T[h(key(x))]




“|‘ Hash Functions

> What makes a good hash functions?

- BTW: so far we are cheating because we
know 1in advance the set to store.

- If we know in advance the keys then it is
possible to construct a perfect hash function
and hash tables so that it works well.

> But what if we don't know the keys? or even
the number of elements to be stored?




“|‘ In Practice

> If you know almost nothing on the elements
to be stored, 1.e., size, number, etc...

> Need for a fast good hash function, maybe
several ones.

> Need for dynamic hash tables.

> Good examples at:
http://burtleburtle.net/bob/hash/

> Good if you can have the size of the hash
table a power of 2.




