Algorithms and Architecture I

Data Structures




1 How to Represent Sets?

> Finite dynamic sets, to be more precise.

> Operations on these sets, such as search,
insert, delete, minimum, maximum,
successor, predecessor.

> If only insert, delete, and test membership,
then such a dynamic set is called a
dictionary.

> Best way to implement a set depends on the
needed operations.




T Examples of Dynamic Sets

> Heaps.

> Stacks, queues, linked lists.
- Hash tables.

> Binary search trees.

> Red-black trees (a particular binary search
tree that is balanced).

> In general they use pointers.




i Stacks and Queues

> Specify which element the Delete operation
removes:

- stacks = LIFO (last-in, first-out)
- queues = FIFO (fist-in, first-out)

> Insert called push or enqueue.
> Delete called pop or dequeue.

> Can be implemented with an array.

> Operations in O(1).




i Stack Operations

> Stack_empty(S): // test emptiness
return top(S) == // index of last element

> Push(S,x):
top(S)++
S[top(S)]:=x

> Pop(S):
if Stack_empty(S) then error “underflow”
else
top(S)--
return S[top(S)+1]




i Queue Operations

> Enqueue(Q,x):

Q[tail(Q)]:=x
if tail(Q) == length(Q) then tail(Q):=1

else tail(Q)++

> Dequeue(Q):

x:=Q[head(Q)]
if head(Q) == length(Q) then head(Q):=1

else head(Q)++




il Linked Lists

Linear structure, order given by pointers.

Singly linked & doubly linked lists.
List:

— head (+ tail)

- elements of the list (key + next + previous)
List_search(L,k): // O(n)
x:=head(L)

while x != NIL and key(x) != k do x:=next(x)
return x




il Linked Lists

> List_insert(L,x):
next(x):=head(L)
if head(L)!=NIL then prev(head(L)):=x
head(L):=x
prev(x):=NIL

> List_delete(L,x):
if prev(x)!=NIL then next(prev(x)):=next(x)
else head(L):=next(x)
if next(x)!=NIL then prev(next(x)):=prev(x)

> Running time in O(1).




il Linked Lists with Sentinels

Sentinel: special element to avoid tests.

- next(nil)=head(L), prev(nil)=tail(L)

— empty list: next(nil)=prev(nil)=nil
List_delete(L,x):

next(prev(x)):=next(x)

prev(next(x)):=prev(x)

List_search(L,x):

x:=next(nil(L))

while x!=nil(L) and key(x)!=k do x:=next(x)
return x // can be nil element (sentinel)

9



il Linked Lists with Sentinels

> List_insert(L,x):
next(x):=next(nil(L))
prev(next(nil(L))):=x
next(nil(L)):=x
prev(x):=nil(L)

> Note:
- O(1) gain in speed, may be useful in tight loops

- sentinels consume memory, bad if many small
lists

10



i) Coding with Arrays

> If you have no pointers, it is possible to use
arrays and indices.

> Memory management:

- one list of used element,

— one list of free element.

11



il Rooted Trees

> Trees represented by linked data structures.
> Binary trees.
> Trees with unbounded branching.

- Best representation depends on the
application.

12



