

Algorithms and Architecture I

Binary Search Trees

Introduction

- Support for many operations, e.g., search, min, max, predecessor, successor, insert, delete.
- > Suitable as dictionaries and priority queues.
- Important parameter: height of the tree.
 - basic operations proportional to the height
 - E[height] of random binary trees $\Theta(\lg n)$.
- Binary tree: every node in the tree has ≤2
 children. See trees from last week.

Binary Search Trees

- Keys stored satisfied the following property:
 - for a node x and a node y in the *left* subtree of x,
 key[y]≤key[x]
 - for a node x and a node y in the right subtree of x, $key[y] \ge key[x]$.
- Very similar to quicksort.
- inorder_tree_walk(x):

 if x≠NIL then inorder_tree_walk(left(x))

 print key(x)

 inorder_tree_walk(right(x))

Searching

- iterative_search(x,k):
 while x≠NIL and k≠key(x) do

 x:= k<key(x) ? left(x) : right(x)
 return x
 </pre>
- > Running time is *O*(*height*).
- tree_min(x): while left(x)≠NIL do x:=left(x)
 return x
- tree_max(x): while right(x)≠NIL do x:=right(x)
 return x

Successors (Sorted Enumeration)

> tree_successor(x): if right(x) \neq NIL then **return** tree_min(right(x)) y := parent(x)while $y \neq NIL$ and x = right(y) do x := yy := parent(y)return y > Again O(height)

Insertion

Change the tree, but keep the BST property!

```
> tree_insert(T,z): // simplified
y:=search_leaf(T,x)
parent(z):=y
fix_child(y,z)
```

Add a new leaf everytime.

Deletion

- Change the tree, but keep the BST property!
- delete(T,z): // simplified
 if z is a leaf then remove z
 else if z has one child then splice out z
 else if z has two children then
 y:=tree_successor(T,z)
 remove y
 replace z by y
- Optimized in the book, again O(height).