Algorithms and Architecture I

Binary Search Trees




il Introduction

> Support for many operations, e.g., search,
min, max, predecessor, successor, insert,
delete.

> Suitable as dictionaries and priority queues.

> Important parameter: height of the tree.

- basic operations proportional to the height

— E[height] of random binary trees O(lgn).

> Binary tree: every node in the tree has <2
children. See trees from last week.




i) Binary Search Trees

- Keys stored satisfied the following property:

- for a node x and a node y in the left subtree of x,

keyly]<key[x]

- for a node x and a node y in the right subtree of
x, keyly|=key[x].

> Very similar to quicksort.
> inorder_tree_walk(x):
if x#NIL then inorder tree walk(left(x))

print key(x)
inorder_tree_walk(right(x))

3



i) Searching

> iterative_search(x,k):
while x#NIL and £zkey(x) do
x:= k<key(x) ? left(x) : right(x)
return x

> Running time is O(height).
> tree_min(x): while left(x)zNIL do x:=left(x)

return x

> tree_max(x): while right(x)#NIL do x:=right(x)

return X




"l_ Successors (Sorted Enumeration)

> tree_successor(x):

if right(x)2NIL then
return tree_min(right(x))

y:=parent(x)

while yzNIL and x==right(y) do
x:=y
y:=parent(y)

return y

> Again O(height)




“|‘ Insertion

> Change the tree, but keep the BST property!

> tree_insert(7,z): // simplified
y:=search_leaf(7’x)
parent(z):=y
fix_child(y,z)

> Add a new leaf everytime.




“|' Deletion

> Change the tree, but keep the BST property!

- delete(T,z): // simplified
if z is a leaf then remove z
else if z has one child then splice out z
else if z has two children then
y:=tree_successor(7,z)
remove y
replace z by y

> Optimized in the book, again O(height).




