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R-Tree Based Indexing of Now-Relative
Bitemporal Data

Rasa Bliujute, Christian S. Jensen, Simonas Saltenis,
and Giedrius Slivinskas

The databases of a wide range of applications, e.g., in data warehousing, store
multiple states of time-evolving data. These databases contain a substantial part
of now-relative data: data that became valid at some past time and remains valid
until the current time. More specifically, two temporal aspects of data are fre-
guently of interest, namely valid time, when data is true, and transaction time,
when data is current in the database, leading to bitemporal data. Only little
work, based mostly on R-trees, has addressed the indexing of bitemporal data.
No indices exist that contend well with now-relative data, which leads to tem-
poral data regions that are continuous functions of time. The paper proposes
two extended R-trees that permit the indexing of data regions that grow con-
tinuously over time, by also letting the internal bounding regions grow. Internal
bounding regions may be triangular as well as rectangular. New heuristics for
the algorithms that govern the index structure are provided. As a result, dead
space and overlap, now also functions of time, are reduced. Performance stud-
ies indicate that the best extended index is typically 3-5 times faster than the
existing R-tree based indices.
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1 Introduction

Data stored in a database has two fundamental temporal aspects—valid time and
transaction time [14, 8]. The valid time of a database fact is the time when the fact
Is true in the modeled reality, while the fact’s transaction time is the time during
which it is current in the database. Valid and transaction time are orthogonal in that
each could be independently recorded, and each has specific properties associated
with it. The valid time of a fact can be in the past or in the future (allowing to store
information about the past and the future) and can be changed freely. In contrast,
the transaction time of a fact cannot extend beyond the current time and cannot be
changed. Valid time is meaningful and necessary for a wide range of applications,
and transaction time is particularly useful in applications where traceability or ac-
countability are important. Applications dealing with temporal data would benefit
from temporal support being built into the DBMS. In response to this, several dozen
temporal data models and query languages have been proposed, and temporal sup-
port is finding its way into the SQL standard [19, 20]. This paper addresses the need
for efficient indexing of temporal data.

Existing research shows that regular indices such’asr&es are unsuited for
temporal data [23], and there has recently been proposed a number of indices for
temporal data. The majority are for transaction-time data, and only few support
valid-time data. Even less research has been done on creating indices that support
data with both valid and transaction time, so-called bitemporal data.

Due to the similarities between bitemporal and spatial data—the combined
valid and transaction time of a fact can be treated as a region in two-dimensional
space—spatial indices can be adapted for indexing bitemporal data. Several existing
proposals [10, 11] are based on thetRee [1].

The existing bitemporal indices fall short in efficiently supporting data related
to the current time, i.e., data for which the end of the valid time or transaction
time is not fixed, but tracks the progressing current time. We term sucindata
relative. It occurs naturally and frequently. Consider an example where we want to
record new employees in a company’s database. The time when the employees start
working (valid-time interval begin) is known, but we frequently do not know when
the employees will leave. This is captured by letting the valid-time end extend to
the progressing currenttime. The same applies to transaction time. The transaction-
time interval begin is the time when we insert a fact into the database. Since we do
not know when the fact will stop being current in the database, its transaction-time
end is not fixed, but extends to the current time. Existing indices support efficiently
only now-relative transaction-time intervals. None support data where the valid-
time interval is now-relative.

The paper describes how to support now-relative bitemporal data in R-tree
[5] based indices, and it proposes two extendédrBes. The new indices permit
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the indexed data regions to grow as time progresses, by also letting the internal
bounding regions grow. Internal regions may be triangular as well as rectangular,

and new heuristics for the algorithms that govern the index structure are provided.

As a result, dead space and overlap, now functions of time, are reduced. This
reduces the number of paths followed during a search, and performance studies
indicate that the best extended index is typically 3-5 times faster than existing R-

tree based indices.

The presentation is structured as follows. In Section 2, we briefly describe
important concepts and explain how the time associated with bitemporal data may
be described using two-dimensional regions. Section 3 surveys the existing work
related to the indexing of temporal data and motivates the need for a new bitemporal
index. The structures of the proposettiRee extensions are given in Section 4, and
Section 5 presents algorithms for the insert, delete, and search operations. Section 6
presents performance studies. The final section concludes and points to research
directions.

2 Background

To investigate the indexing of bitemporal data, we need a suitable representation
of bitemporal data. TQuel’s four-timestamp format [17] (4TS) is the most popular
for this purpose. With this format, tuples each have a number of non-temporal
attributes and four time attributes/Thegin andVTend—the times when the
tuple’s information became and ceased to be true in the modeled r@dlltggin

and TTend—the times when the tuple became and ceased to be current in the
database.

A tuple is now-relative if its information is valid until the current time or if the
tuple is part of the current database state. This is represented by the use of variables,
which denote the current time, for the time attribué&end andTTend [3]. The
variable UC (denoting 'until changed’) is used fbfend, and the variable NOW
Is used folVTend. Table 1 exemplifies the 4TS format. The time granularity is a
month, and the current time (CT) is 9/97.

Table 1: The EmpDep Relation

Emp | Dep | TThegin TTend | VTbegin | VTend
(1) | John | Adv 4/97 uc 3/97 5/97
(2) | Tom | Mgm 3/97 7197 6/97 8/97
(3) | Jane | Sales 5/97 ucC 5/97 NOW
(4) | Julie | Sales 3/97 7197 3/97 NOW
(5) | Julie | Sales 8/97 ucC 3/97 7/97
(6) | Ann | Mgm 5/97 uc 3/97 NOW
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Tuple (1) records that the information “John works in Advertising” was true
from 3/97 to 5/97 and that this was recorded during 4/97 and is still current. Tuple
(3) records that “Jane works in Sales” from 5/97 until the the current time, that we
recorded this belief on 5/97, and that this remains part of the current database state.

Specific constraints apply to insertions, deletions, and modifications of tuples.
When inserting a new tuple, the constraMi®begin < VTend andVThegin <
‘current time’ if VTend is equal to NOW apply to valid time; and the constraints
TTbegin = ‘current time’ andTTend = UC apply to transaction time. Any
currentdatabase tuple can be deleted or modified. Deleting a tuplel Thad
value UC is changed to the fixed value ‘current tim&', making the tuple not
current anymore (e.g., Tuple (2)); tuples are not physically deleted. A modification
is modeled as a deletion followed by an insertion (e.g., an update led to Tuple 4 and
Tuple 5).

VT VT
097 | 997 |
897 |
1 697 |
5197 |
397 |
WL L R
497 cT T 3/97 7/197 CT T
Casel Case 2
VT VT
97| 007 |
1 797 |
5197 | 1
1 397 |
R VL
5/97 cT T 3/97 7197 CT T
Case 3 Case 4
VT VT
97 | 97|
397 | 1 ﬂ
1 2/9777
L Wl
5/97 CcT T 597 7/97 CT T
Case5 Case 6

Figure 1: Bitemporal Regions

The temporal aspect of a tuple can be represented graphically by a two-
dimensional (“bitemporal”) region in the space spanned by valid and transaction

1we use closed intervals and I&tTbegin , TTend] denote the interval that includéETbegin and
TTend.
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time [8]. Cases 1-5 in Figure 1 illustrate thg@emporal regionf Tuples (1-4)
and (6), respectively.

A now-relative transaction-time interval yields a rectangle that “grows” in
the transaction time direction as time passes (Tuple (1), Case 1). Having both
transaction- and valid-time intervals being now-relative yields a stair-shaped region
growing in both the transaction-time and the valid-time direction as time passes
(Tuple (3), Case 3). Information can be recorded in the database after it becomes
true in the modeled reality. In this situation, also having both the transaction- and
valid-time intervals being now-relative yields a stair-shape with a high first step
(Tuple (6), Case 5).

It is also possible to record information in the database before it becomes true
in the modeled reality. In this case, the valid-time end must be a ground value (Tuple
(2), Case 2); otherwise, the valid-time end, which would extend to the current time,
would initially be smaller than the valid-time start, violating the second insertion
constraint. If, at some time, a tuple stops being current, the bitemporal region stops
growing (Tuples (2), (4); Cases 2, 4, 6).

Stated generally, we obtain six combinations of time attributes for which the
bitemporal regions are qualitatively different (Figure 1), see Figure 2 where ‘tt1’,
‘tt2’, ‘vtl’, and ‘vt2’ denote ground values that satisfy the constraints given above.

TTbegin TTend VTbegin VTend

Casel ttl ucC vtl vt2
Case 2 ttl 2 vil vit2
Case 3 tt1 ucC vtl NOW  (t&tvtl)
Case 4 ttl tt2 vtl NOW  (t&vtl)
Case 5 tt1 ucC vtl NOW  (ttdvtl)
Case 6 ttl tt2 vtl NOW  (ttdvtl)

Figure 2: Possible Combinations of Time Attributes

We have set the context for using spatial indices for indexing bitemporal data.
The next section discusses the existing indices for bitemporal data that are based on
spatial indices.

3 Existing Bitemporal Indices

A wealth of indices for temporal data exist; references [2, 23] provide comprehen-
sive surveys. We focus on the indexing of bitemporal data. In one approach, a
bitemporal index is obtained by making a valid-time index partially persistent [4].
The Bitemporal Interval Tree [10] represents this approach. Another approach is to
view bitemporal data as a special case of spatial data (recall Figure 1) and to adapt
spatial indices to bitemporal data. This is the approach we adopt in this paper.
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Many indices have been developed for spatial data [15]. One of the most ro-
bust indices for spatial data with extent (i.e., non-point data) is the R-tree [5] in
its different variants—e.g., the'Rtree [21], the R-tree [1], and the Hilbert R-tree
[9]. All variants of the R-tree try to minimize the overlap between the minimum
bounding rectangles of the nodes at each level of the tree and to minimize the dead
space in the bounding rectangle of each node (dead space is the space in the min-
imum bounding rectangle not occupied by any enclosed rectangle). Minimizing
overlap reduces the 1/0O-incurring branching of search into several subtrees. Min-
imizing dead space reduces the probability that queries unnecessarily access disk
pages, eventually finding no qualifying data.

The R*-tree is promising for indexing of bitemporal data, but it is not directly
applicable because it accommodates only static rectangles. We have to also contend
with growing rectangles and static and growing stair-shapes. The straightforward
approach to accommodating growing bitemporal regions is to represent them using
static rectangles that extend to the maximum possible transaction- and valid-time
values. As a consequence, the minimum bounding rectangles in internal tree nodes
also extend to the maximum values, resulting in excessive dead space and overlap;
see Figure 3.

C e __.____
! Max-timestamp
/approach
VT !
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T >Bounding
,{‘f fffffff | } rectangles
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1 ]
T2 [
T =
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Figure 3: Indexing Growing Bitemporal Regions Using Maximum Timestamp Val-
ues

Kumar et al. [10, 11] propose a new approach to handling now-relative trans-
action time, but do not address now-relative valid time. In their approach (the 2-R
approach), they use two R-trees. Tinent R-tree indexes all growing rectangles,
while thebackR-tree indexes all static rectangles. Observing that all growing rect-
angles are in the front tree and that they all end at the (progressing) current time,
Kumar et al. show that storing only the transaction-time begin values with fixed
valid-time intervals in the front tree is adequate to support now-relative transaction
time. The 2-R approach contends well with now-relative transaction time, but both
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trees often have to be searched in a single query, resulting in more disk accesses and
diminishing the advantages of the decreased overlap. The problem of representing
now-relative valid time also remains open.
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Figure 4. Graphical Representation of a) a "Hidden" Growing Stair-shape, b) a
Minimum Bounding Rectangle of Node 2, and ¢) a Minimum Bounding Region of
Node 2

It is possible to combine the spatial index approach and the partial persistence
approach. Reference [11] presents the Bitemporal R-Tree, where an R-tree is used
to index the valid-time intervals and key values of the data objects, and transaction-
time support is achieved by making the structure partially persistent. However, the
Bitemporal R-Tree does not accommodate now-relative valid-time intervals, and,
like all structures based on partial persistence, it introduces some space overhead.
Experiments that do not consider now-relative valid time [11] indicate that this tree
has very good query performance.

The straightforward approach to accommodating now-relative valid-time in-
tervals that was exemplified in Figure 3 does not seem promising. With this ap-
proach, many queries with valid-time interval above the current time will access
the resulting very large rectangles that have valid-time end values bigger than any
valid time specified in queries and valid-time begin values smaller than or equal to
the current time. Yet, none of these accesses will contribute to the answer of the
guery because the actual bitemporal data regions represented by these rectangles
have valid-time end values equal to the current time, and the valid time specified in
the query is greater than the current time.

The straightforward approach, which we call tiaximum-timestamp ap-
proach does not utilize the knowledge of the actual shapes of bitemporal regions.
To achieve the best performance, a bitemporal index should utilize this knowledge.

In subsequent sections, we present an extension of the existing spatial index
that efficiently handles bitemporal data with both fixed and now-relative valid- and
transaction-time intervals.
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4 Structure

Having identified shortcomings in the existing bitemporal indices, the next step is
to show how these shortcomings may be eliminated by extending these indices. In
this section, we extend the static structure of tifeti®e by introducing variables
NOW and UC in index nodes.

4.1 Recording Exact Geometries in Leaf Nodes

By using variables NOW and UC at all tree levels, it becomes possible to record
the exact geometry of the bitemporal regions (Section 2) in leaf nodes and to record
minimum bounding rectangles, that grow when the regions inside them grow, in
non-leaf nodes. In comparison with the maximum-timestamp approach, dead space
and overlap is much reduced; compare node 2 in Figures 3 and 4(b).

With this extension, the content of tree nodes does not differ significantly from
that of the original R-tree. A leaf-node entry contains four timestamps, encoding a
bitemporal region, and a pointer to the actual bitemporal data stored in the database.
The possible combinations of the four timestamps are shown in Figure 2, and they
encode the bitemporal regions in Figure 1.

A non-leaf node entry contains four timestamps, alflatgen , and a pointer
to a child node. Here, the timestamps represent a minimum bounding rectangle
that encloses all child-node entries. Note that timestamps (tt1, UC, vtl, NOW)
represent a stair-shape in a leaf-node entry, but represent a rectangle growing in
both transaction and valid time directions in an entry of a non-leaf node. A sample
tree, corresponding to Figure 4(b), is given in Figure 5(a).

A small growing stair-shape may be placed together with other regions in
a larger bounding rectangle having a fixed valid-time end (that is bigger than the
current time). One day, the stair-shape will outgrow its bounding rectangle, making
this rectangle invalid, see Figure 4(a). The fldiglden is used to handle such
stair-shapes.

Considering properties of the tree, & denote the maximum number of
entries that fit in a node, and letdenote the minimum number of entries that must
be in any non-root node. We then have that< M /2. In addition, the tree is
balanced.

The tree structure just described reduces dead space and overlap, but further
improvement is possible. Assume that we want to find all regions that overlap with
the query window given in Figure 4(b). The search extends to nodes 1 and 2 since
their minimum bounding rectangles overlap with the query window, but no regions
qualify for the answer in node 2.



R-TREE BASED INDEXING OF NOW-RELATIVE BITEMPORAL DATA 1169

Flag H dden
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Pointers to Data Tuples

Figure 5: Extended Versions of thé Ree

4.2 Using Minimum Bounding Regions

We take one step further and lift the restriction that the minimum bounding regions
in non-leaf nodes be rectangles and allow all the kinds of bitemporal regions in-
troduced in Section 2. In some cases, it may be reasonable to group stair-shapes
together in one node and bound them with a stair-shape instead of a rectangle. Con-
sider the example from the previous section: in Figure 4(c), we see the benefit
when the same regions as in Figure 4(b) are bounded with a stair-shape instead of a
rectangle. Performing the same search, we now have to access only node 1.

In order to indicate whether the 4 timestamps in an entry of a non-leaf node
encode a minimum bounding rectangle or a minimum bounding stair-shape, we in-
troduce a flagRectangle , in entries of non-leaf nodes. This is needed to separate
the situations where we wanda end value of NOW and & Tend value of UC to
denote a growing stair-shape versus a growing rectangle. If a minimum bounding
region does not enclose any regions that go above the liaex, we do not want
it to be a rectangle. Figure 5(b) shows the extended tree witRé¢katangle flag
(cf. Figure 4(c)). The tree with this node structure, we termGifetree

To summarize, we have extended th&etRee in two steps. We have done
this in order to be able to do performance experiments on both the GR-tree and the
intermediate versiomf the GR-tree (with minimum bounding rectangles in non-
leaf nodes), to see the effect on the performance and the relevant tree properties
(dead space and overlap) of the more general regions in non-leaf nodes.
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Since entries in the GR-tree nodes not only encode static rectangles, but also
encode, e.g., growing stair-shapes, the originaltiee algorithms must also be
reconsidered.

5 Index Algorithms

Section 5.1 covers the basic index algorithms and lower-level algorithms. Sec-
tions 5.2-5.4 describe in depth the insertion algorithm by covering the original R
tree algorithm and its improvements including a time parameterization. Section 5.5
briefly describes algorithms for the intermediate GR-tree and the maximum-time-
stamp approaches.

5.1 Search, Deletion, and Insertion

Search, deletion, and insertion are the main operations on the tree.

The R*-tree algorithm for search [1] scans the tree, evaluating the predicate
given in the query (e.g., equality, overlap) on the query window and the regions
encoded in the index-node entries.

Deletion in the R-tree is done in the following way: if a node from which an
entry is deleted gets underfull, all other entries from that node are deleted and are re-
inserted into the tree at the same level. Thus, the insertion algorithm is responsible
for maintaining a good structure of the tree.

The R-tree insertion algorithm first invokes the ChooseSubtree algorithm to
find an appropriate node in which to place a new entry. If the selected node already
containsM entries, the OverflowTreatment algorithm is invoked. If, during the
insertion of the new entry, this is the first call of OverflowTreatment at the given
level of the tree, the RemoveTop algorithm is invoked; otherwise the Split algorithm
is invoked. The RemoveTop algoritfmemoves entries from a node and reinserts
them. In the worst case, all these entries are reinserted into the same node or they
overflow some other node. In these cases, OverflowTreatment is called again, and
this time it invokes the Split algorithm. The split of a node can result in overflow of
the parent node. If this happens, OverflowTreatment is called for the parent node.

These algorithms employ lower-level algorithms that determine whether a pair
of regions overlap and whether one region contains another region; and algorithms
that compute the area and margin of a region, the distance between the centers of
minimum bounding rectangles of two regions, the intersection of a pair of regions,
and the minimum bounding region of a node.

While the original R-tree search, deletion, and insertion algorithms are suit-
able for the GR-tree, new lower-level algorithms, capable of manipulating bitem-

2This algorithm implements forced reinsertion, introduced in [1].
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poral regions (recall Figure 1) encoded using flags and timestamp variables, must
be provided. Flags and timestamp variables require special treatment in these algo-
rithms.

The original R-tree insertion algorithm can be employed for the GR-tree,
but since the R-tree was designed for static rectangles, the criteria according to
which (1) a relevant node is selected (ChooseSubtreep, €2)ries for removal are
selected (RemoveTop), and (3) the entries of the overfull node are split into two
nodes (Split) are likely to be inefficient for bitemporal regions.

5.2 The Original R*-Tree Insertion Algorithm

The ChooseSubtree algorithm places a new entry in the tree. It starts at the root
node and traverses the tree. At each visited node, the algorithm places a new entry
in the subtree where the placement of the entry leads to the least enlargement of the
overlap between the bounding regions of the subtrees of the node.

VT VT VT

overlap area
********************** enlargement Rt
L2 | 2 | L2 ! )
M ! ! new region o | new region
T " over imB | 6 1! |
1 , overlap area : ! ! ! T | overlaparea
1. ! i | | ! | iy 1 enlargement
I g I
S i S
CT TT CT TT CT TT
a) b) <)
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L2 | overlap area L2 !
! enlargement new region T new region overlap area |
| enlargement !

|
. overlap area

Figure 6. Overlap Between Two Minimum Bounding Regions (a) Before Insertion
of a New Entry, (b) After Insertion of a New Entry into Node 1, and (c) After
Insertion of a New Entry into Node 2, (d) Case (b) After a Period of Time, (e) Case
(c) After a Period of Time

To determine the overlap enlargement when placing an entry in a subtree, the
overlap between the subtree’s minimum bounding region, not including the new en-
try, and the minimum bounding regions of all the other subtrees is determined. Then
the overlap, when the minimum bounding region of the subtree is extended with the
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new entry, is determined, and the overlap enlargement resulting from the placement
of the entry is found. The subtree, or node, where including the new entry yields
theleast overlap-area enlargemeind selected. For example, parts a)—c) in Figure 6
show that the minimum bounding region of node 2 requires the smallest overlap-
area enlargement when inserting a new entry. Ties are resolved by choosing the
node whose minimum bounding region requires ltgest area enlargementhen
including the new entry, and further ties are resolved by choosing the node whose
minimum bounding region has tisenallest areavith the new entry enclosetl.

The R'-tree Split algorithm investigates a subset of all the possible distribu-
tions of entries into two nodes and finds the best distribution according to three

heuristics: _ _ _
1. The sum of the margins of the resulting bounding rectangiesgin-value

of the distribution) should be as small as possible.

2. The overlap between the resulting bounding rectanglesrigp-valueof

the distribution) should be as small as possible.

3. The sum of the areas of the resulting bounding rectangiea{valueof the
distribution) should be as small as possible.

The subset of all possible distributions to investigate is selected as follows.
Along each of the two axes, entries of the overfull node are sorted according to
their bottom and top values, i.e., according/fbbegin andVTend values for the
valid-time axis and according fBTbegin andTTend values for the transaction-
time axis. Then, for each of the four sortings, the algorithm investigdte®m + 2
distributions. The-th distribution is generated by assigning the fitst1+i entries
of the sorting to the first node and the rest to the other. Theée Split algorithm
Is divided into two steps. Using the first heuristic above, one axis is selected. Then,
the last two heuristics are used considering only the distributions along this axis.

The Original R*-Tree Split Algorithm

RS1 For each axis: (1) sort the rectangles by their lower then by their upper value and
determine all distributions as described above; (2) compute S, the sum of margin-values of
all the distributions for the axis.

RS2 Let the axis with the minimum S be the split axis.

RS3 Along the split axis, choose the distribution with the minimum overlap-value. Resolve
ties by choosing the distribution with the minimum area-value.

The original R-tree RemoveTop algorithm sorts the entries of the overfull
node by the distances of their centers from the center of the minimum bounding
rectangle of the overfull node and chooses to remove and reinsgrtgbecent of
the entries with the largest distances. Experiments showpthat30% yields the
best performance [1].

3The algorithm differs slightly for leaf and non-leaf nodes. For non-leaf nodes, overlap area enlargement
is not considered—only area enlargement and area are considered.
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5.3 Parameterization

The original R-tree ChooseSubtree, Split, and RemoveTop algorithms try to ensure
that the tree structure is as good as possible at the current time, be it by selecting an
appropriate node or by appropriately dividing entries of a node into two nodes.

In the GR-tree, the indexed regions may be functions of time. This implies
that quantities such as overlap and dead space are also functions of time. This leads
to the introduction of &ime parametem the algorithms.

For example, in the case of the ChooseSubtree algorithm, the time parameter
allows us to compute the overlap-area enlargement not only as of the current time,
but also as of some later time. A growing entry placed in some node may yield the
smallest overlap-area enlargement at the current time, but this enlargement may not
remain the smallest as time passes, because a growing entry in a node forces the
node’s minimum bounding region to also grow. It may be better to place the entry
in a node that is not the best at the current moment, but may be the best after some
time. For example, parts a)-c) of Figure 6 suggest to include the new entry in node
2, while parts d) and e) illustrate that it is probably better to insert the new entry
in node 1, because the overlap of the two minimum bounding regions then remains
constant as time passes.

The parameterized ChooseSubtree, Split, and RemoveTop algorithms do not
differ substantially from the corresponding originai-Ree algorithms. They in-
voke new lower-level algorithms (Section 5.1) for performing operations such as
intersection and overlap as of the time specified by the time parameter.

The time parameter should improve the capability of the insertion algorithm to
handle bitemporal regions. The performance study in Section 6.2 considers which
specific time parameter values to use invoking the algorithms.

5.4 Improved Algorithms

Beyond the parameterization, other options exist for improving the ChooseSubtree,
Split, and RemoveTop algorithms. Special attention can be paid to the different
types of bitemporal regions that these algorithms have to contend with. From the
point of view of the algorithms, there are four different types of bitemporal regions.
1. Static rectangles and static stair-shapes.
2. Rectangles growing in one direction (with variable UC).
3. Growing stair-shapes (with variables UC and NOW, andR&etangle
flag not set).
4. Rectangles growing in both directions (with variables UC and NOW, and
theRectangle flag set).
We say that an entry is of tyddaf the region represented by that entry is of
typet; in the same way, a node is of typ# its bounding region is of typé
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Having in mind the importance of small overlap and dead space in the tree, it
is natural to prioritize the first type of nodes as the best and the fourth type of nodes
as the worst. Based on this prioritization of node types, a general heuristic that could
govern the ChooseSubtree, Split, and RemoveTop algorithms is to group entries into
nodes so as to achieve the best types of the nodes possible, keeping the number of
bad nodes in the tree as low as possible. This implies that entries of the same type
should be grouped together. For example, wanting to achieve the lowest possible
number of nodes bounded with growing stair-shapes, we have to group growing
stair-shapes together into nodes bounded by growing stair-shapes; distributing them
among several nodes is bad because, e.g., inserting a single growing stair-shape into
a static node means that this node must be bounded by a growing stair-shape.

The Choose Subtree Algorithm

The original R-tree ChooseSubtree algorithm considers the overlap and area en-
largements when choosing the node in which to insert a new entry. We designed a
slightly modified version of this algorithm that uses an additional heuristic, taking
into account the type of the new entry and the types of the nodes where the entry
can be inserted. The modified ChooseSubtree algorithm selects the group of nodes
of the same type where it is the best to insert the new entry. Then, it passes that
group of nodes to the original*Rree ChooseSubtree algoritAmvhich makes its
decision according to overlap and area enlargement.

More specifically, the modified ChooseSubtree algorithm first tries to select a
group of nodes of the same type such that, when the new entry is inserted in any
node of that group, the type of that node will remain the same. If several groups of
different type nodes satisfy this condition, the group with nodes of the best type is
chosen.

If no groups at all qualify, the new entry will make the type of the chosen node
worse. In this case, the algorithm chooses a group of nodes of the same type such
that, when the entry is inserted into any node of that group, the type of that node
will be worsened the least. If there are several such groups, the algorithm chooses
the group of nodes of the worst type.

In the performance studies, both the origingHiree ChooseSubtree algo-
rithm and the modified ChooseSubtree algorithm, termedduitional-heuristics
ChooseSubtreglgorithm, are tested.

4When using the original Rtree algorithm for the GR-tree, we assume that it uses the new lower-level
algorithms.



R-TREE BASED INDEXING OF NOW-RELATIVE BITEMPORAL DATA 1175

Split Policies

Two approaches to improving the Split algorithm can be taken. First, similarly to
the ChooseSubtree algorithm, the Split algorithm could explicitly contend with the
different types of entries, trying to achieve good types of resulting nodes. Sec-
ond, the original R-tree Split algorithm could be modified so that it investigates
additional distributions, but uses the same set of heuristics. We investigate each
approach in turn.

Following the heuristic formulated in the beginning of Section 5.4atldtio-
nal-heuristics Split algorithriries to split entries of an overfull node into two nodes
so that each node may be bounded by a region of the best type possible. At the same
time, it tries not to distribute entries of the same type into two different nodes.

Each of the two nodes produced by the split can be bounded by a region of
the four types mentioned. There are ten possible pairs of types of the resulting two
bounding regions. We prioritize these pairs according to their goodness (see Fig-
ure 7). A pair of bounding regions; andx> is considered better than a pair of
bounding regiong; andys if:

(type(x1) # type(y1) V type(xz) # type(y2)) A ((type(x1) =< type(y1) A
type(xz) < type(y2)) V (type(x1) < maxitype(yi),type(y2)) A type(xz) <
maxtype(y1), type(y2)))).

Priority | Regionl | Region2
1 L] L] [ Type1
2 [] z z Type 2
3 C [ / Type3
4 L] 4 L Type4
5 C £
6 £ Z
7 [] (.
8 [ (.
9 Z L
10 (I (I

Figure 7: Pairs of Bounding-Region Types

The Additional-Heuristics Split Algorithm

AHS1 From the ten pairs of types of bounding regions, select the par) such that: (a)

it is possible to achieve this pair of bounding-region types when dividing the entries of the
overfull node into two nodes and (b) no other pair with a higher priority can be achieved.
Let the node to be bounded with a region of typ&e N1, and let the node to be bounded
with a region of type» be N». Let S contain all entries of the overfull node and tet< 1.
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AHS2 Move to N> all entries fromS that cannot be put int&/1 because of the type of its
bounding region. Move tav1 all entries fromS that cannot be put intd/> because of the
type of its bounding region.

AHS3 Let S, denote all entries frons of typer. Fort = 1 to 4, if there are no entries of
typetr in No and|S;| + |[N1| < M — m + 1, moveS; into N1, else if there are no entries of
typer in Ny and|S;| + |N2| < M — m + 1, movesS; into No.

AHS4 If |S| = 0, stop.

AHSS5 If |[N1] = 0 A |[N2] = 0, invoke the additional-sorts Split algorithm (to be described
shortly) and stop.

AHS6 If |[N1] = 0, pick a "seed" entry from S for Guttman’s quadrati®istribute algo-
rithm [5] such that its inclusion intg; would enlarge that node’s minimum bounding region
the most. Pué into N1. GotoAHSS.

AHST7 If |N>| = 0, pick a seed entry from S and put it intoNo.

AHSS8 Apply Guttman’s quadrati®istribute algorithm and stop.

Note that the above algorithm uses a time-parameterized version of Guttman’s
quadratidistribute algorithm.

We now consider the second approach to improving the origifdide split
algorithm. The original R-tree Split algorithm could be used without changes for
the two trivial cases where all entries are static rectangles or all entries are static
stair-shapes.

The R'-tree Split algorithm considers distributions of entries based on the four
sortings (recall Section 5.2). More distributions may be considered by introducing
additional sortings, and this may be advantageous because the new sortings could
implicitly address the differences between rectangles and stair-shapes.

The additional-sorts Split algorithngiven below first calls the original 'R
tree Split algorithm and then investigates additional distributions based on two more
sortings. In the first sorting, entries are sorted by tMdiend - TTbegin value,
which expresses how far the upper-left corner of the region is from theyaxis.
VTend is set to the appropriate fixed value if the region encoded by the entry is
a growing rectangle and idTend is NOW. For stair-shapes, the value O is used
instead olVTend - TTbegin , because the stairs of stair-shaped regions always lie
on the axisy = x. In the second sorting, the lower-right corners of the regions are
used, i.e., entries are sortedW4ybegin - TTend. The algorithm is sketched next.

The Additional-Sorts Split Algorithm

ASS1 Invoke the original R-tree Split algorithm.

ASS2 If all entries are static rectangles or all entries are static stair-shapes, exit.

ASS3 Sort the entries byMTend - TTbegin ) and by ¢ Tbegin - TTend). Determine

all distributions as described in Section 5.2.

ASS4 Among the distributions generated A8S3and the one chosen WSS, select the

one with the minimum overlap-value. Resolve ties by choosing the distribution with the
minimum area-value.
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The RemoveTop Algorithm

In addition to the original Rtree RemoveTop algorithm, alternative RemoveTop
algorithms are possible.

First, a RemoveTop algorithm can be induced from the Split algorithm em-
ployed, which can be explained as follows. The RemoveTop algorithm is expected
to identify in some way the “worst” entries of an overfull node for reinsertion. Re-
moveTop is thus similar to the Split algorithm in that it has to divide entries of an
overfull node into two groups. The difference from the Split algorithm is that these
groups must have predefined numbers of entries.

Second, a RemoveTop algorithm of quadratic complexity can be employed.
It removes entries that, when removed, shrink the area of the minimum bounding
region of the node the most. After removing one entry, this algorithm scans the
remaining entries to find the next entry to remove.

5.5 Algorithms for the Intermediate GR-Tree and
Maximum-Timestamp-Approach-Based Indices

We have presented the algorithms for the GR-tree. The intermediate GR-tree is
simpler: although it records the same general bitemporal regions in its leaf nodes as
does the GR-tree, it uses only static and growicfanglesn its non-leaf nodes.

This means that the new lower-level algorithms for overlap, area, containment, mar-
gin, and distance computations must be used (see Section 5.1) for leaf nodes. But
other algorithms, for example, algorithms to compute the intersection of a pair of
regions and to compute the minimum bounding region of a node, are simpler than
those for the GR-tree. The intersection algorithm is invoked for non-leaf nodes
only, and it therefore gets only rectangles as its arguments (the origiria¢&in-
tersection algorithm can be used), and the algorithm for computing the minimum
bounding region of a node produces only rectangles as its results.

As for the GR-tree, we will consider our proposed ChooseSubtree, Split, and
RemoveTop algorithms along with the original-Ree ones for the intermediate
GR-tree in order to choose the best combination of algorithms.

In the next section, we do performance studies for the GR-tree, the intermedi-
ate GR-tree, and both the'Rree and the 2-R index using the maximum-timestamp
approach. The latter two indices use the originaitiee algorithms. The only ad-
ditional computation needed is to check whether found leaf-node entries actually
gualify for the answer of a query (recall Section 3).

6 Performance

This section reports on a series of experiments aimed at exploring the performance
and other characteristics of the indices that support now-relative bitemporal data.
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Section 6.1 discusses data and query generation. Section 6.2 presents a study aimed
at choosing a good time-parameter value and the best combination of the Choos-
eSubtree, Split, and RemoveTop algorithms for the GR-tree and the intermediate
GR-tree. This sets the stage for a comparison, in Section 6.3, of the performance of
the two tuned GR-trees, the'Rree (1-R) and the 2-R index.

6.1 Data and Query Generation

The four indices were implemented using the Generalized Search Tree Package,
GIST [6]. The numbers of I/O operations are measured using simulation. The page
size is set to 1024 bytes, and one tree node occupies one page. Thus, one node read
or write corresponds to one page access (one I/O operation). A buffer of size 100
pages is allocated for each index (for the 2-R index, two buffers of 50 pages are
allocated). We include a buffer because Leutenegger and Lopez [12] showed that
omitting a buffer may lead to quantitatively and qualitatively incorrect conclusions.
The root is always kept in the buffer; for the other nodes, the least-recently-used
page replacement policy is employed. If a node is changed during an insertion or
a deletion, its page is changed in the buffer and is marked as a "dirty" page. Dirty
pages are written to disk at the end of the operation or when they have to be removed
from the buffer.

To fairly compare search and update performance of the indices, the same
data has to be inserted into the trees and the same queries have to be run on them.
We use so-calledorkloadsto simulate the construction and usage of an index for a
certain period, termed the index life-time. In our experiments, a workload typically
contains 60,000 update operations. An update operation is either an insertion or a
(logical) deletion. One update operation occurs at each point in the life-time. First,
we perform 4000 insertions in a sequence. Then, insertions occur with probability
Insand deletions occur with probability-2 Ins.

When inserting regions, we use several parameters. We let the valid-time
begin of a bitemporal region be strongly bounded to the insertion time of a region.
Specifically, it is normally distributed with a mean equal to the insertion time and
with some deviationDev. The valid-time interval length is uniformly distributed
between 0 an¥L. Alternatively, the valid-time end can be NOW, i.e., regions can
be stair-shapes. The percentage of stair-shaped regions to be inserted in an index is
denoted a$S

We intermix queries with update operations in the workload, with the aim
of measuring search performance throughout the entire index life-time. We use
bitemporal range queries (25% of all queries), point queries (25%), and transaction
timeslice queries (50%). Besides, 65% of all queries have their transaction-time end
equal to the current time. Paramef@naxldenotes the maximum valid-time range
for bitemporal range queries and timeslice queries, and the maximum transaction-
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time range for bitemporal range queries. We uoserlapas the query predicate,
meaning that data regions that overlap with the given query window qualify for the
result.

The data and query generation parameters described above are vevrked
load parametersand are defined in Table 2. Each of the experiments usually uses
different values of one of the parameters and average values of the other parameters.

Table 2: Workload Parameters

Parameter| Description | Values used | “Average” value |
SS percentage of stair-shaped regiops0, 20, 40, 60, 80, 100 60
in the index
Ins probability of insertion 50, 60, 70, 80, 90, 100 70
Dev deviation ofVTbegin , when the | 1000, 5000, 10000, 25000, 5000
mean is the insertion time 50000
VL maximum valid-time interval| 50, 100, 500, 1000, 3000, 5000 500
length
Qmaxl maximum valid- and transactiont 1, 100, 300, 500, 1000, 3000 300
time intervals given in a query

In the experiments, we compute for each used workload the average number
of 1/0s performed by the update and search operations present in that workload.

6.2 Tuning the Indices

We have already seen that the properties, e.g., overlap, that govern the heuristics
used in the ChooseSubtree, Split, and RemoveTop algorithms are time-dependent,
and this led to the parameterization of these algorithms by time (cf. Section 5.3).
The next step is to consider which specific time-parameter values to use.

If the time-parameter value is setttdhe algorithms aim to achieve a tree that
is at its best as dftime units after the current time. But only the data present in the
index at the current time is considered. In practice, the tree is queried, new regions
are inserted, and existing ones are deleted all the time. So the objective is to find
a time-parameter value that yields the best average search performance throughout
the entire index life-time.

We have carried out extensive studies of the GR-tree with the goals of under-
standing how different time-parameter values affect the performance of the tree for
varying workloads, allowing us in turn to identify an overall good time-parameter
value.

The results of the experiments show that there is no single time-parameter
value that works best in all cases. However, when the time parameter is set to O,
the search 1/O cost of the resulting tree is always the biggest. This is especially
visible when the percentage of stair-shaped regiS8sif the tree is low (Figure 8)
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Figure 8: Search 1/0O Cost for Trees Constructed Using Different Time-Parameter
Values and Using a Workload with Average Workload Parameter§$uat20

or the regions are strongly bounded to their insertion time (aD&awvalue). In

the remaining studies, we have chosen a time-parameter value of 10,000 for the
GR-tree and the intermediate GR-tree because values around 10,000 consistently
showed good average case performance.

Another set of experiments was carried out to select the best combination of
Split, RemoveTop, and ChooseSubtree algorithms. The origiir&ide, additional-
heuristics, and additional-sorts Split algorithms; the originatiee, split-like, and
guadratic RemoveTop algorithms; and the originattRRe and additional-heuristics
ChooseSubtree algorithms were considered. The three Split algorithms were com-
bined with the three RemoveTop algorithms and with the two ChooseSubtree algo-
rithms. Thus, eighteen combinations of algorithms were investigated in total. The
GR-tree was tested using four sets of workloads with varying valus§ @fev, VL,
andins.

The results of the experiments are shown in Figure 9, where the average num-
ber of disk accesses during a search operation is plotted for the GR-trees constructed
using different combinations of Split, RemoveTop, and ChooseSubtree algorithms.
To see the overall gain in search performance achieved by usage of new algorithms
and the time parameter, we also show the results for the GR-trees constructed using
the original R-tree algorithms with the time-parameter value O.

The combination of the additional-heuristics Split algorithm, the quadratic
RemoveTop algorithm, and the additional-heuristics ChooseSubtree algorithm show
the best performance. The results also suggest that the additional-heuristics Split
algorithm can be substituted by the additional-sorts Split algorithm without sacri-
ficing the search performance. This can be explained by the observation that using
the additional-heuristics ChooseSubtree algorithm, after some initial period of tree
construction, most nodes of the tree become homogeneous, holding entries of the
same type. The additional-heuristics Split algorithm invokes the additional-sorts
Split algorithm in such cases (cf. Section 5.4).
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Similar experiments were performed for the intermediate GR-tree. The best
results were achieved using the same combination of the Split, RemoveTop, and
ChooseSubtree algorithms and time parameter value 10,000.

6.3 Comparison of the Four Indices

Section 6.2 dealt with the tuning of the GR-tree. In this section, we compare search
and update performance of both tuned GR-trees and the two maximum-timestamp-
approach based indices, 1-R and 2-R. We use two sets of workloads: the first with
varying SSvalues, and the second with varyi@maxlvalues. Figure 10 presents

the search and update performance of the trees constructed using both sets of work-
loads.

Considering search 1/O cost, the GR-tree outperforms both the 1-R and the
2-R trees and the intermediate GR-tree. The update I/O cost s the lowest in the 2-R
index because there are two trees instead of one. The front and back trees taken
separately are smaller than the trees of the other indices. At the same time, two
trees negatively affect the search performance because queries often lead to search
in both of them.

The performance of the indices is influenced by the dead space and over-
lap. When the percentage of growing stair-shapes gets bigger, the overlap in both
GR-trees increases more significantly as time passes, thereby decreasing the perfor-
mance. With a growing percentage of stair-shapes, dead space also increases in the
intermediate GR-tree. This does not apply for the GR-tree because it employs strict
insertion and splitting policies and uses minimum bounding stair-shapes. In 1-R
and 2-R, dead space and overlap are excessive because they depend on the maxi-
mum timestamp value, which must be very big in order to exceed any fixed time
value used throughout the existence of an index.

In summary, our studies indicate that both GR-trees outperform the maximum-
timestamp-approach-based indices by a significant margin (the only exception is the
good update performance in the 2-R index). If we consider only the GR-trees, we
can observe that in most cases, using minimum bounding regions instead of mini-
mum bounding rectangles improves index performance.

7 Conclusions

Because regular indices such as thetBee are unsuited for indexing temporal data,

a number of indices for temporal data have been proposed. None of these support
now-relative valid-time intervals, which are accommodated by almost all tempo-
ral data models and are natural and meaningful for many kinds of applications.
For bitemporal indices based on R-trees, the maximum-timestamp approach is a
straightforward solution to the indexing now-relative data. But with this approach,
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facts with now-relative valid-time intervals are represented using very large rectan-
gles, and the resulting search performance is poor due to excessive dead space in
the index nodes and overlap between nodes.

We proposed an extension of thé-Ree, the GR-tree, for general bitemporal
data. Now-relative valid and transaction-time intervals are supported using vari-
ables NOW for valid time and UC for transaction time. Index leaf nodes capture
the exact geometry of the bitemporal regions of data. Bitemporal regions can be
static or growing, rectangles or stair-shapes. We explored two versions of the GR-
tree: one using minimum boundinrgctanglesin non-leaf nodes, and one using
minimum boundingegionsin non-leaf nodes.

A new suite of index algorithms was developed to support the new index struc-
ture. Because dead space and overlap in the GR-trees are functions of time and
because the index algorithms utilize these, a time parameter was added to the in-
dex algorithms. One new ChooseSubtree, two new Split, and two new RemoveTop
algorithms that take into account the specific properties of the bitemporal regions
were introduced.

The performance studies show that the best combination of the proposed al-
gorithms, with a time parameter of 10000, yields an index that significantly out-
performs the index with the originalRree algorithms. The GR-tree outperforms
the indices using the straightforward approach by at least a factor of 3. We also
experienced that using minimum bounding regions instead of merely rectangles in
non-leaf nodes of the GR-tree yields a noticeable improvement.

Currently, we are working on improving the space utilization of the GR-tree.
The sequential nature of transaction time can be addressed when performing splits.
Itis also possible to elaborate on the paper’s idea and introduce more general shapes
than stair-shapes in non-leaf nodes. This would require more complex computations
and more storage space, but might reduce dead space and overlap enough to further
improve the overall search and update performance. It also appears to be possible
to integrate the handling of now-relative data into other existing bitemporal indices,
such as the 2-R index, thus avoiding the inefficient maximum-timestamp solution.
Finally, the theoretical analysis of R-trees is still lightly researched, making analyt-
ical studies of GR-trees a desirable direction. The time parameter and its influence
on performance introduces new challenges to the analytical studies of R-trees.
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