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Temporal Entity-Relationship

Models—a Survey
H. Gregersen and C. S. Jensen

The Entity-Relationship (ER) Model, using varying notations and with some
semantic variations, is enjoying a remarkable, and increasing, popularity in
both the research community, the computer science curriculum, and in indus-
try. In step with the increasing diffusion of relational platforms, ER modeling
is growing in popularity. It has been widely recognized that temporal aspects
of database schemas are prevalent and difficult to model using the ER model.
As a result, how to enable the ER model to properly capture time-varying infor-
mation has for a decade and a half been an active area of the database research
community. This has led to the proposal of almost a dozen temporally enhanced
ER models.

This paper surveys all temporally enhanced ER models known to the au-
thors. It is the first paper to provide a comprehensive overview of temporal ER
modeling, and it thus meets a need for consolidating and providing easy access
to the research in temporal ER modeling. In the presentation of each model, the
paper examines how the time-varying information is captured in the model and
presents the new concepts and modeling constructs of the model. A total of 19
different design properties for temporally enhanced ER models are defined, and
each model is characterized according the these properties.

Keywords: conceptual modeling, entity-relationship models, database design,
temporal databases, temporal data models, design criteria for temporal ER mod-
els, time semantics
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1 Introduction

The Entity-Relationship (ER) Model [2], in its different versions, with varying syn-
tax and with some semantic variations, is enjoying a remarkable, and increasing,
popularity in both the research community and in industry. The model is easy to
comprehend and use. An ER diagram provides a good overview of database design,
and the model’s focus on the structural aspects of database schemas, as opposed to
their behavioral aspects, also appears to match the levels of ambition for documen-
tation adopted by many users.

The ER model may be used for different but related purposes, namely for
analysis—i.e., for modeling a mini-world—and for design—i.e., for describing the
database schema of a computer system. As a third alternative, the ER model may
be supported directly by a DBMS. In that case, it may be used as an implemen-
tation model. However, although graphical and textual ER query languages have
been proposed by the research community, the ER model is rarely used as an im-
plementation model. Rather, the typical use seems to be one where the model is
used primarily for design, with the design diagrams also serving as analysis dia-
grams, and where the constructed diagrams are mapped to a relational platform. In
step with the increasing diffusion of relational platforms in industry, ER modeling
is growing in popularity.

The use of ER modeling is supported by a wealth of textbook material. For
example, most introductory database textbooks (e.g., [10, 27, 3]) contain chapters
on ER modeling, and several complete books exist (e.g., [1, 34]) that are devoted
entirely to ER modeling.

Companies either develop their own ER diagrams from scratch, or they pur-
chase and modify generic, standard diagrams1. Indeed, generic diagrams for a vari-
ety of types of applications are commercially available, e.g., the FSDM from IBM.

Some companies build ER diagrams using only simple drawing tools. Other
companies use one of the many commercially available tools that are more so-
phisticated and better support the building of diagrams and also map diagrams to
implementation platforms. Such tools are either stand-alone, e.g., SmartER from
Knowledge Based Systems, Inc., and ER/1 from Embarcadero Technologies, or are
integrated parts of larger CASE tools, e.g., Teamwork/IM SQL from Cayenne Soft-
ware, Inc., and Visible Analyst Workbench from Visible Systems Corporation. Typ-
ical implementation platforms include those provided by major SQL-based database
systems.

In the research community as well as in industry, it has been recognized
that temporal aspects of database schemas are both prominent and difficult to cap-

1In industry, ER diagrams are typically termed ER models. This is in contrast to common usage in the
research community and the usage in this paper, where a data model is a modeling notation and a diagram is
a description using some notation.
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ture using the ER model. Put simply, when modeling fully the temporal aspects,
the temporal aspects tend to obscure and clutter otherwise intuitive and easy-to-
comprehend diagrams. As a result, some industrial users simply choose to ignore
all temporal aspects in their ER diagrams and supplement the diagrams with phrases
such as “full temporal support.” The result is that the mapping of ER diagrams to
relational tables must be performed by hand; and the ER diagrams do not document
well the temporally extended relational database schemas used by the application
programmers.

The research community’s response has been to develop temporally enhanced
ER models and 10 such models have been reported in the research literature. Their
informative names include the Temporal Enhanced Entity Relationship model [12,
11], the Temporal Entity Relationship model [33], and the Relationship, Attribute,
Keys, and Entities model [13], to name but a few.

Two general, orthogonal temporal aspects have received widespread attention,
namelyvalid timeand transaction time[16]. The valid time of a database fact is
the time when the fact is true in the mini-world. (We use the term “mini-world” for
the part of reality that the database under consideration stores information about.)
Thus, all database facts have an associated valid time. Different time types may be
used when modeling the valid-time aspect, e.g., single time instants, intervals, or
sets of intervals.

Perhaps more importantly, the valid time may or may not be captured explic-
itly in the database—this is the choice of the database designer. In ER models,
unlike in the relational model, a database is not structured as a collection of facts,
but rather as a set of entities and relationships with attributes. Thus, the valid times
are associated only indirectly with facts. As an example, consider an Employee
entity “E1” with a Department attribute. A valid time of June 1996 associated with
value “Shipping” does not say that “Shipping” is valid during June 1996, but rather
that the fact “E1 is in Shipping” is valid during June 1996. Thus, when valid time is
capturedfor an attribute such as Department, the database will record the varying
Department values for the Employee entities. If it is not captured, the database will
record only one department value for each Employee entity.

Orthogonal to valid time, the transaction time of a database fact is the time
when the fact is current in the database and may be retrieved. Unlike valid time,
transaction time may be associated with any structure stored in a database, not only
with facts. Still, all structures stored in a database have a transaction-time aspect.
And again, this aspect may or may not, at the designers discretion, be captured in
the database. The transaction-time aspect has a duration: from insertion to (logical)
deletion.

In addition to valid and transaction time, a data model may support arbitrary
time attributes with no built-in semantics in the data model. For employee entities,
such attributes could record birth dates, hiring dates, etc. A data model that supports
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such time attributes is said to supportuser-definedtime.
In summary, facts stored in a database have a valid time and a transaction

time, although those times may not be explicitly recorded [16]. We say that a data
modelsupportsa temporal aspect, i.e., valid or transaction time, if it provides built-
in means for indicating where in an ER diagram this aspect should be captured.

The temporal ER models attempt to more naturally and elegantly model the
temporal aspects, such as valid and transaction time, of information by changing the
semantics of the ER model or by adding new constructs to the model. The models
take quite different approaches to adding built-in temporal support to the ER model.

This paper is the first to survey all known (to the authors!) temporal ER mod-
els. In addition, the paper provides a comprehensive list of possible properties of
temporal ER models, and it characterizes the models according to those properties.
With 9 models having been proposed over the past 15 years, such a survey is in
order. It consolidates in a single and easy-to-access source the central ideas, con-
cepts, and insights achieved in temporal ER modeling. The survey makes it easier
for future research and development to maximally build on, benefit from, and extend
past results. Thus, the survey is aimed at researchers and practitioners interested in
temporal data modeling and data model design.

Four studies are somewhat related to or complement the study reported here.
Theodoulidis and Loucopoulos [36] describe and compare nine approaches to

specify and use time in conceptual modeling, here viewed as both semantic data
modeling and requirement specification, of information systems. Their study in-
cludes only two of the ER models surveyed here. The comparison of the models
fall in three parts and classifies the models in terms of time semantics, model se-
mantics, and temporal functionalities. Our criteria also characterize the models in
terms of user-friendliness. The primary focus of their paper is the examination of
the ontology and properties of time in the context of information systems, whereas
our focus is the examination of how the extensions of the ER model into temporal
ER models are shaped.

McKenzie and Snodgrass [23] survey and evaluate twelve different tempo-
ral extensions of the relational algebra. They evaluate the algebras against 26 de-
sign criteria. These criteria are mainly concerned with the properties of the data
objects—temporal relations and their components—that the algebras manipulate
and with the properties of the algebraic operators themselves. While their survey
concerns internal algebras, our survey concerns notations for conceptual modeling.
In addition, our focus is on the properties of the structural aspects of the temporal
ER models.

Without coauthors, Snodgrass has also conducted a critical comparison of
temporal object-oriented data models [30]. While ER models do incorporate some
structural object-oriented features, our study does not consider object-oriented mod-
els; for that, we instead refer the reader to Snodgrass’ study. Also unlike our study
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that emphasizes structural aspects, Snodgrass’ study focused on the models’ query
languages, i.e., on behavioral aspects.

Roddick and Patrick [26] survey the progress of incorporating time in various
data models at the conceptual and, primarily, logical level of database modeling, and
in artificial intelligence. The work describes nine different properties of temporal
modeling systems, but unlike our survey they do not evaluate the models against
the properties described. Their broad study briefly covers two of the temporal ER
models in our study.

The descriptions in the literature of the different models use diverse and, at
times, incompatible and conflicting terminology. In this survey, we adopt the coher-
ent terminology of the temporal database glossary [16] when possible. In addition,
the original definitions of the models are often informal and rely on the reader’s
intuition. In part also to achieve a homogeneous survey of a manageable size, we
will give informal descriptions of some aspects. Further, we will emphasize the
common core of features of the temporal ER models: the use of ER modeling to
capture the structural aspects of a database schema. We will not cover behavioral
aspects such as query and rule languages in detail.

The paper is structured as follows. Section 2 provides an overview of all
temporal ER models known to the authors. Section 3 then identifies a set of 19
evaluation criteria and evaluates each model according to these criteria. Finally in
Section 4, a conclusion and a discussion of future work is given.

2 Existing Models

This section describes each existing ER model separately and in turn. Initially, an
overview is provided that explains the structuring of the descriptions and introduces
a running example that will be used for exemplification throughout.

2.1 Overview

This section describes all the temporal ER models that we are aware of. We will
assume that the reader is familiar with Chen’s standard ER model [2] and the various
extensions of that model, e.g., subtyping (see, e.g., [10]).

The models are presented in chronological order of their first publication. The
description of the models all have, with a few exceptions, the same basic layout.
First, a short introduction of the model is given. Second, we describe how the
model captures time. Third, we give an example diagram built using the model’s
notation. For each model, the sample diagram models the same mini-world, to be
described shortly. In order to keep the diagrams simple and still be able to reach
into the corners of the different models, we deviate in some places slightly from
the description below. This way, it is possible to more concisely present the special
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features of the models. When we do deviate, we will state this explicitly. Finally, a
short summary of the model is given.

Mappings of ER diagrams to implementation platforms for the models will
only be explained if they are described in the papers and differ substantially from
the typical mappings from the EER model to relational platforms.

The mini-world that we describe next concerns a company divided into dif-
ferent departments. Each department has a number and a name and is in charge of a
number of projects. A department keeps track of the profits it makes on its projects.
Because the company would like to be able to make statistics on its profits, each
department must record the history of its profits.
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Start_date End_date

Start_date End_date

Salary_period

Salary

Amount

Department

#

End_dateStart_date

period

Amount

Type

Manages

Start_date

Manager

Rank

Belongs_to

Name

First_name

Name

Last_name

Project

BudgetID

     for
Responsible

Profit

(1,N)

(1,1)

(1,1)

(1,N)

(1,N)

(1,N)

(1,1)

(1,1)

(1,N)

(1,N)

(1,N)

(1,N)

(1,N)

Works_for

Figure 1: ER Diagram Describing the Running Example

Each project has a manager and some employees working on the project. Each
project has an ID, and a budget. Each project is associated with a department which
is responsible for the project. Employees belong to a single department. Once an
employee is assigned to a department, the employee works for this department for
as long as the employee is with the company. For each employee, the company
registers the ID, the name, the date of birth, and the salary. The departments would
like to keep records of the different employees’ salary histories.

Employees work on one project at the time, but employees may be reassigned
to other projects, e.g., due to the fact that a project may require employees with
special skills. Therefore, it is important to keep track of who works for what project
at a given time and what time they are supposed to finish working on their current
project.

Some of the employees are project managers. Once a manager is assigned
to a project, the manager will manage the project until it is completed or other-
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wise terminated. Figure 1 presents the ER diagram describing the database design
corresponding to this mini-world.

Figure 2 provides an overview of the surveyed models, along with their main
citations, the models on which they are based, and the identifiers we will be using
in the rest of the paper.

Name Main citations Based on model Identifier
Enhanced Entity Relationship model [10] ER EER
Temporal Entity-relationship Model [18, 19] ER TERM

Relationships, Attributes,
Keys, and Entities Model [13] ER RAKE

Model for Objects with Temporal
Attributes and Relationships [24] ER & OO MOTAR

Temporal EER model [12, 11] EER TEER
Semantic Temporal EER model [8, 9] ER STEER

Entity-Relation-Time model [35, 37, 22] ER ERT
Temporal ER model [33] ER TER

Temporal EER model [21] EER TempEER
Kraft’s Model [20] ER TempRT

TERC+ [39] ERC+ TERC+

Figure 2: Short Presentation of the Surveyed Models

It is important that the presentation (and definition!) of a model is precise
and complete. The descriptions of the surveyed models range from very formal and
detailed to vague and abstract.

The models we have found to be described the best are TERM and TERC+,
which in [18] and [39] are described in great detail. Models MOTAR, ERT, and
TER are presented in articles dedicated to this single purpose, but their descriptions
are not as detailed and comprehensive as that of TERM. Models RAKE, TEER,
and STEER are also presented in articles only concerning the presentation of the
models, but their descriptions are less comprehensive. The description of TempEER
is somewhat incomplete. For example, the description of the mapping algorithm
supposed to translate TEER diagrams to relational schemas does not cover time-
varying aspects. The description of TempRT is also incomplete, primarily because
this model is not yet fully developed.

2.2 The Temporal Entity-Relationship Model

TERM, the Temporal Entity-Relationship Model, was the first temporally extended
ER model to be proposed [18, 19]. The main motivation for TERM was “to pro-
vide database designers with a model for data definition and data manipulation that
allows a general and rigorous treatment of time” [18]. To accomplish this, TERM
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most notably introduces the notion of a history, which is a function from a time
domain to some value domain. Histories are then used for the modeling of time-
varying aspects. For example, the (time-varying) value of an attribute of an entity
becomes a history, rather than a simple value.

Unlike all the other temporal ER models, TERM does not have a graphical
syntax, but has a Pascal-like syntax.

The Representation of Time

In its outset, TERM makes a strict distinction between a real-world phenomenon
and its ER-model representation. For example, TERM distinguishes between “time”
and the representation of time—there is one “time,” but many possible representa-
tions of time. This distinction extends to the other modeling constructs, e.g. values
and histories. We focus on the representations.

Domains are termedstructures. A time domain is thus a time structure. With
TERM, the designer may define time structures, but TERM also includes a pre-
defined time structure of Gregorian dates. These dates are equipped with a vari-
ety of predicates, termed structure relations, e.g., “before_date” and “is_in_leap”
(is the argument date in a leap year?), and operators, e.g., “next-day” and “least-
recent.” Figure 3 illustrates two value structures, one for employee names and one
for generic identifiers. It also provides a (partial) time structure, termed “date,” with
one relation.

relations
function is_in_leap( t: date): boolean;
begin

is_in_leap := t.y mod 4 = 0 and
(t.y mod 100 < > 0

or t.y mod 400 = 0);
end

Structure
st_ID = integer;

name= packed array [1..20] of char;
Structure

record d,m,y: integer end

Structure
date =

where
this.y >= 1852
this.m
this.d

>=
>=

and
1 and this.m <= 12

and1 this.d <= 31
and
and

(this.d < > 31
or this.m in [1,3,5,7,8,10,12]) and

(this.d < > 30 or this.m < > 2) and
or this.m < > 2)

or mod and
mod 100  < >  0

or this.y mod

( (this.d < > 29
(this.y 4 = 0
(this.y

400 = 0)));

Figure 3: Sample Value and Time Structures

A historyis a mappingh : T → V whereT is a time structure andV is a value
structure. Histories are used for capturing the variability of time-varying aspects, as
we shall see in the next section. Attributes of entities and roles of relationships have
atomic histories while, e.g., entire entities have composite histories, i.e., histories
composed of atomic and composite entities. All composite histories are sets of
histories: An entity (relationship) history consists of an existence history and the
set of all its attribute (role) histories.
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The (atomic) historyh is represented by thehistory structure2T×V , i.e., by
a set of (time, value) pairs. To achieve a finite history structure in situations were
time structureT represents continuous time, it is possible to introduce as part of
the history structure a derivation function that uses the stored (time, value) pairs to
compute values for additional times.

Figure 4 exemplifies histories. First, a generic existence history for entities
and relationships is defined as a history structure with two variables t and v and a
somewhat complex condition. The domain of the variable t is date, and the domain
of the variable v is Boolean/Kleenean. This domain consists of the valuesfalse,
true, andunknown. The condition involving the three universally quantified vari-
ables “s1”, “s2”, and “s” disallows holes in existence histories. To the right, a salary
history, sal_history, is defined that uses a step-wise constant derivation function, de-
riv_sal (least_recent_date, when applied to a pair of a set of dates and a date “z”,
returns the largest date in the set that is not larger than “z”).

from wherethis

derivation
function

z: date) : real;
var
begin

x state of

deriv_sal(h: sal_history;

sal_history;

x:= that s1 where
s1.t=least_recent_date( those tx from date where

exists s2

from h

from h where
s2.t=tx, z);

end;

if x <> nil
deriv_sal:= x.v;

else
deriv_sal:= uncertain

Pattern
sal_history=

history
t : date;
v : real end;

Structure
standard_existence=

history
t : date;

where
v : kleenean end;

all s1, s2 from this where
((s1.v = true and s2.v = false and
impl all s

and
((s1.v = false and s2.v = true and

s
before_date(s, s1)

and
((s1.v = true and s2.v =true and
impl all s

before_date(s1, s) and before_date(s, s2)
impl

before_date(s1, s2)

before_date(s1, s2)

before_date(s1, s2)

impl all from this where

before_date(s2, s) impl s.v = falsebefore_date(s2, s) impl

from this where

s.v = false)

s.v = false)

s.v = true);

impl

Figure 4: TERM History Definitions [19]

All data items within a database will not change at the same time. Moreover,
for some database items, only the current value is of interest, whereas for others,
only some values in the past may be known, while still other items require a history
of the entire past. For these reasons, histories are applied to individual database
items instead of to the database as a whole.

The Model Components

The next step is to consider the association of histories with time-varying database
items.

The basic modeling constructs of TERM are those of the ER model.Entities
model the interesting objects from the mini-world;valuesmodel the properties of
the mini-world objects. The values are associated with the entities viaattributes.
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If an attribute has no history, that is, if the value of an attribute never changes
once it is assigned, it is referred to as a constant attribute; otherwise it is variable.
Constant attributes are represented by a (attribute, value) pair, and variable attributes
are represented by a (attribute, history) pair.

Entity types are declared by a name and a set of (constant and variable) at-
tributes. The attribute namedexistenceis mandatory and describes the existence of
the entity type. If the existence attribute is specified as constant, the attribute has
Boolean/Kleenean as its domain. A variable existence attribute has an associated
Boolean/Kleenean-valued history.

Two or more entities can enter into arelationshipin which each entity plays
a role. Like attributes of entity types, roles of relationship types are represented by
values, now entity references, or by histories, now entity-reference valued.

Relationship types are declared by a name, an existence description, a set of
roles, and a set of attributes. Binary relations may be declared to express partic-
ipation constraints such as 1:1, 1:N, and N:1, where the constraints are enforced
for each database state in isolation. Writing aoneafter the role name restricts par-
ticipation to at most one (at a time). By placing atotal after a role name, total
participation is indicated.

A TERM schema consists of a set of entity type definitions and a set of re-
lationship type definitions. Figure 5 shows the two entity types, Project and Em-
ployee, and the relationship type, Works_for, between them.

Entity type
Project
existence

attributes

ID constant st_ID;

budget constant real;

variable
standard_existence;

Employee

attributes

existence

ID constant st_ID;

variable
standard_existence;

constant

constant name;

name;

Birth_date constant date;

Entity type

variable sal_history;

First_name

Last_name

Salary

Relationship type

existence

attributes

no_of_hours/week constant integer;

roles
emp

proj

total constant

variable work_history;

constant
kleenean;

Employee;

Works_for

Figure 5: Sample TERM Entity and Relationship Types

A general bottom-up procedure for designing TERM schemas has been pro-
vided. There are four steps. The first step is to define all nonstandard component
value sets. Figure 3 exemplifies this step. As illustrated by the date structure, it is
possible to express constraints on the values of the value sets. A so-called relation
is also shown that determines whether or not a given date is in a leap year. The next
step is to define histories. As illustrated in part by Figure 4, histories have a name,
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a time structure, a value structure, an optional list of predicates for restricting the
set of pairs forming a history, a list of relations, and a list of operations. The third
step is to define patterns. A pattern is a value structure together with at least one as-
sertion, at most one derivation function, and zero or more approximation functions,
or it is a history structure together with at most one derivation function and zero or
more approximation functions. Thesal_historyshown at Figure 4 is an example of
the latter. The final step is to define entity and relationship types. These consist of
a name and a list of components. The components are specified as either existence,
attributes, or roles. Figure 5 give an example of this step.

Summary

TERM was the first temporal ER model and has a Pascal-like syntax. It allows data-
base designers to model temporal aspects through the use of history structures as
values of attributes and relationship-type roles. In addition, histories are employed
to model the existence of entities and relationships.

2.3 The Relationships, Attributes, Keys, and Entities Model

The Relationships, Attributes, Keys, and Entities model, RAKE, [13] was devel-
oped in 1984 as part of a project at the U.S. Federal Reserve Board. One of the
tasks in the project was to design a database to “store data on the history, attributes,
and interrelationships of American and foreign financial institutions,” and the model
was developed to provide better support for this work than the ER model.

RAKE fundamentally adopts the ER model, but replaces some of the ER
model’s modeling constructs with new ones and adds entirely new constructs. Most
prominently, RAKE introduces so-called key fields in diagrams: Key attributes of
entity types are places in “key boxes” in the upper-left corners of the entity-type
rectangles. This explicit representation of the entity-keys was unexpectedly found
to also be useful when modeling time-varying data, to record multiple states of
entities and relationships in the same application.

All new constructs are defined in terms of their mapping to relational tables
and in terms of existing ER constructs. Following a discussion of the representation
of the time domain in RAKE, we consider in turn the modeling of time-varying
relationships and attributes.

The Representation of Time

The time type used in RAKE corresponds to the typeDATE(or TIMESTAMP) sup-
ported by, e.g., various SQL implementations of relational DBMSs. This type is
used for modeling of valid time and user-defined time, but it could also be used to
capture transaction time.
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It is noted that the history of entities and relationships consists of series of
states succeeding one another in time. The series are punctuated by events that
transform one state into another. The states have duration while the events do not.
The valid times of states are thus modeled using a pair of time attributes, BEGIN-
stamp and ENDstamp, and the valid times of events are modeled using an attribute
Tstamp. Next, we shall see how these time attributes are used in RAKE diagrams.

The Model Components

As usual, entity types are represented by rectangles. The primary key of an entity
type is placed, in a so-called keybox, in the upper-left corner of its rectangle. Weak
entity types are also represented by rectangles. For these, the partial key is placed
in the keybox, and the primary keys of the identifying relationships are stacked on
top of the keybox.

Non-primary-key attributes of entity types are represented by circles that, as
usual, are linked to the entity types. If an attribute circle is enclosed by a square
(also a rectangle), this means that the attribute may be treated as an entity type.
As in the ER model, relationship types are represented by diamonds. As for at-
tributes, if a relationship-type diamond is enclosed by a rectangle, this implies that
the relationship type may also be treated as an entity type.

In non-temporal databases, only the current, or last-known, state of entities
and relationships are stored. When recording multiple states, entities and rela-
tionships are identified differently. Entities are identified by non-reusable iden-
tifiers (e.g., serial numbers). In contrast, RAKE distinguishes between different
relationships—that are instances of the same relationship type—solely by their
timestamps. Below, we delve into these and other temporal aspects.

Modeling Time-varying Relationships

When changing a binary relationship type where only a single state is recorded,
to record multiple states, the relationship type turns ternary. To see this, consider
Figure 1. The Responsible_for relationship type consists of a set of pairs of Depart-
ment and Project entities, with the entities being represented by their primary-key
values. In contrast, because we want to record project assignments for different
times, it is necessary for Works_for to be ternary: only with a third work_period
entity is it possible to represent project assignments of the same employee to the
same project, at different times.

Thus, the ternary relationship type in Figure 6(a) is the correct way to repre-
sent a temporal relationship between two entities in RAKE. To avoid cluttering the
diagrams with time-period rectangles, RAKE eliminates this notation and instead
introduces the semantically equivalent notation in Figure 6(b). In this way, RAKE
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Employee
ID

BEGINstamp
ENDstamp

Time Period

Project

ID

Employee
ID

Project

ID

BEGIN
stamp

(b)

ENDstamp

Works_for

(a)

Works_for

Figure 6: The Representation of Time-varying Relationship Types in RAKE

represents temporal relationship types as weak entity types owned by a time-period
entity type that is not explicitly represented in the diagrams [13, pp. 282–283].
Together with the primary keys of the other entity types participating in the rela-
tionship type, the ENDstamp, which is part of the key of the owner entity type, is
sufficient to uniquely identify instances of the relationship type. The BEGINstamp,
also a part of the owner entity type, is therefore simply treated as an ordinary at-
tribute.

Modeling Time-varying Attributes

The use of a circle for representing an attribute may be seen as a shorthand for a
relationship between a set of entities and a domain of attribute values. With this
view, the domain of attribute values becomes an entity type, and the technique for
modeling temporal relationship types may be used for modeling temporal attributes
as well. Figure 7(a) illustrates this correspondence. When applying the trans-

Employee
ID

Salary

(c)

ENDstamp

BEGIN
stamp

Employee
ID
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Figure 7: Modeling Time-varying Attributes in RAKE

formation technique from relationship types, we arrive at Figure 7(b). Again, by
having made the entity attribute relationship explicit, the relationship is treated as a
weak entity with an implicit time period as owner. This, in turn, is abbreviated to
Figure 7(c), where the BEGINstamp attribute is made implicit. This is how RAKE
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models temporal attributes. Although the BEGINstamp attribute is implicit in dia-
grams, the attribute is not eliminated, but is assumed to be implicitly present. The
BEGINstamp thus reappears when diagrams are mapped to relational schemas.

Next, observe that the approach here is to use attribute-value timestamping.
Each attribute is treated in isolation. RAKE also has special provisions for time-
stamping sets of attributes of an entity type. Assume that the Salary and Address of
Employee are both temporal and that we want to timestamp them together. Figure 8
illustrates how this is accomplished. Figure 8(b) illustrates the new construct and
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Address

Employee
ID

Salary,
Address
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Salary
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Snapshot

ENDstamp ENDstamp ENDstamp

Figure 8: Modeling Time-varying Attributes Together in RAKE

Figure 8(a) shows the equivalent old construct. When mapping the two diagrams to
a relational database schema, Figure 8(a) would be mapped to two relation schemas,
while Figure 8(b) would only be mapped to a single table. These database schemas
have different advantages. Indeed, this is the rationale for permitting both modeling
constructs.

Finally, it is also possible to timestamp attributes and relationships with time
points, to model temporal events. This is done simply be using an attribute Tstamp
in place of ENDstamp and omitting BEGINstamp from temporal relationships.

Summary

RAKE retains most of the constructs of the ER model, with their usual semantics,
but modifies the handling of primary keys by introducing special keyboxes on entity
types and weak entity types. RAKE also introduces special constructs for model-
ing temporal relationship and attribute types. These are modelled as weak entity
types owned by implicit time-period entity types. The new constructs of RAKE
are defined in terms of their mapping to the relational model and of existing ER
constructs.



TEMPORAL ENTITY-RELATIONSHIP MODELS—A SURVEY 953

2.4 The Model for Objects with Temporal Attributes and Relationships

The motivation for the development of the Model for Objects with Temporal At-
tributes and Relationships (MOTAR) [24] was to integrate database research in
areas such as object-oriented databases, knowledge-based systems, and temporal
databases. MOTAR database schemas, termed Data Model Diagrams (DMDs), are
graphical and extend the ER model with temporal relationships and attributes, and
with rules. A tool for building DMDs is provided, as is a mapping of DMDs to
relation schemas.

The Representation of Time

MOTAR provides built-in features for describing the temporal aspects of a database
application, both at the conceptual and the logical level.

MOTAR concentrates on the modeling of the valid-time aspect of data. If the
application at hand requires transaction-time support in the database, the approach
is to simply add time columns (a single column, registration time, is suggested)
to the appropriate relational schemas that result from mapping the DMD to the
implementation schema.

At the conceptual level, explicit notation is added to describe the temporal
aspects of a mini-world and database design. With this notation, valid-time times-
tamps become implicit.

The meaning of the new modeling constructs follows from their mapping to
logical-level relational schemas. For every temporal aspect described at the con-
ceptual level, corresponding timestamp attributes are added to the relational tables
by the mapping algorithm. At the logical level, valid-time is modeled using SQL
DATEcolumns; details will be given when the temporal constructs are discussed in
the following.

The Model Components

MOTAR includes four kinds of data types: regular entity types, relationship types
(non-procedural relationship types), attribute types, and rules (procedural relation-
ship types). The model provides separate notations for temporal attribute types and
temporal relationship types. When describing these constructs in the following, we
will use the DMD in Figure 9 for exemplification.

Entity and Relationship Types

Entity types are represented by circles and may be primitive or composite. Com-
posite entity types are built from primitive and composite entity types. In Figure 9,
Employee is a primitive entity type. Entity type Department is, as we shall see next,
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Figure 9: Describing the Running Example Using MOTAR

related to Project by means of a Component-Composite relationship. Department
entities thus contain Project entities, and Department is a composite entity type.

MOTAR proposes a wider definition of relationship types than do the usual
ER models. This more general notion of relationship is introduced to make MOTAR
general enough to support a wider variety of applications.

MOTAR relationship types are procedural (rules) or non-procedural. Briefly,
the former operate on attribute values of entities or relationships, and they produce
results that may update the attribute values of the same entity or relationship, or the
attribute values of other sets of entities or relationships.

There are three kinds of non-procedural relationship types, each of which is
illustrated in Figure 9 and explained next.

• Superclass-Subclass (SS) Relationship Types.These are represented by
linking two entity types with a dashed line, with an arrow pointing from the
superclass to the subclass. In SS relationship types, the instances of the sub-
class are of the same type as the instances of the superclass, but additional
information is needed for instances of the subclass. In the figure, Manager is
a subclass of Employee.
Inheritance of attributes is supported. Thus instances of the subclass has the
same attributes as instances of the superclass, in addition to the attributes
specified for the subclass. This inheritance is built into the mapping of SS
relationship types to relational tables. For example, the Employee-Manager
relationship generates the following table.
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EMP_SUBCLASS_MGR(EMP_ID, MGR_ID)

Each tuple in this table links information about a manager, in a Manager table,
with information, stored in an Employee table, about the manager. Joining this
table with an Employee table on EMP_ID and then with a Manager table on
MGR_ID will retrieve all the attributes of a manager.

• Component-Composite (CC) Relationship Types.These are represented
by linking two entity types with a solid line, with an arrow pointing from the
composite to the component.
The notation allows for specifying different constraints. Components being
optional is indicated by using a double, solid line for linking the component
and the composite. If the composite entities may contain multiple occurrences
of the component entity type, the line linking the entity types is given a small
circle at the component end. This is exemplified in Figure 9 by letting Project
be a component of Department (this is a deviation from the running exam-
ple). The CC relationship type between Department and Project results in the
following relational table being generated.

DEP_COMPONENT_PROJ(DEP_NUM, PROJ_ID)

If the composite only contains at most one occurrence of the component, the
key of the above relational table will be reduced to the composite identifier
only. Whether the component object is optional or not does not matter to the
mapping algorithm.

• General Relationship (GR) Types.These are relationships between entity
types that are neither of type SS nor type CC. They are represented by linking
the involved entity types to a diamond with solid lines. N-ary GR types are
allowed.
Each entity type that participates in a GR type has a cardinality ratio that can
be either 1 or N. A cardinality ratio of 1 is represented by linking the entity
type to the diamond with a solid line, as mentioned before. A cardinality ratio
of N is represented using a solid line ending with a small circle at the diamond
side. The meanings of the cardinality radios are as usual. The DMD in the
figure indicates that a department may have more than one employee, but that
one employee belongs to at most one department. The meaning of cardinality
ratios for time-varying GRs is not given.
All GR types have one reference entity type that indicates to which entity
type the attributes of the GR type refer. The reference entity type is deter-
mined from the semantics of the GR type. Figure 9 exemplifies this: because
hours/week is meant to describe how many hours per week an employee is
working on a project, Employee is the reference entity type of the relation-
ship type Works_for. A reference entity type of relationship is indicated with
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a small line perpendicular to the line connecting the entity type to the dia-
mond; see the figure.
Using special time-varying GR types, it is possible to describe relations that
vary over time, such as project assignments of employees and marriages.
Time-varying GRs are represented by double diamonds. In Figure 9, the
relationship type Works_for is time varying, stating that employees may be
reassigned to other projects. The meaning of time-varying GRs is revealed
by their mapping to relational tables in whichDATEtype attributes Start_date
and End_date are introduced. Specifically, the Works_for relationship type
will be mapped to the following two tables.

REL_WORKS_FOR(EMP_ID, PROJ_ID)
WORKS_FOR(EMP_ID, PROJ_ID, EMP_Hours/week,

EMP_Start_date, EMP_End_date)

From the second table, it can be seen that employees may only work for the
same project once because the key of the relation WORKS_FOR only consists
of EMP_ID and PROJ_ID. Almost all the attribute names are prefixed with
EMP because Employee is the reference entity type of Works_for.

Attributes

There are four types of attributes in the model. They are initially divided into iden-
tifiers and simple attributes; and simple attributes are either regular, aperiodic, or
periodic. Identifiers are represented by rectangles and are considered time-invariant.
For example, ID is the identifier of, e.g., the entity type Project. Regular attributes
do not change over time and are thus non-temporal. They are represented by
squares. For example, as departments’ names are not expected to change, Name
of Department in Figure 9 is modeled as a simple, regular attribute.

Aperiodic attributes are expected to change over time, at irregular intervals.
A double square without a letter inside represents an aperiodic attribute. Attribute
Salary of Employee is an example of an aperiodic attribute; it is mapped to the
following table.

EMP_Salary(EMP_ID, Salary_date, Salary)

This mapping, with only one time attribute, results in several interpretations of the
meaning of aperiodic attributes. For example, aperiodic attributes may be assumed
to be step-wise constant. For example, the value of a salary remains constant be-
tween updates. The Salary_date value of a tuple then indicates when the tuple’s
Salary value takes effect. Another interpretation is that aperiodic attributes are as-
sumed to be discrete. For the Salary attribute, this means that a tuple’s Salary value
is valid only at the time indicated by the value of its Salary_date attribute. The
intended meaning is not clear from the description of the model.
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Periodic attributes are expected to change over time within specific intervals,
e.g., monthly or weekly. A double square with a letter inside represents a periodic
attribute. The letter indicates the intervals with which the attribute is monitored.
Two periodic attributes, Profits, are used for recording departments’ profits. One is
sampled monthly, and the other is sampled annually. Rule-1 computes the annual
profits, taking the monthly profits as input. Entity type Department is mapped to
the following tables.

DEP(DEP_NUM, Name)
DEP_Annual_Profit(DEP_NUM, Profit_Year, Annual_Profit)
DEP_Monthly_Profit(DEP_NUM, Profit_Month, Profit_Year, Monthly_Profit)

From this it can be seen that it is possible to specify a granularity for periodic
attributes.

Rules

The notion of rules as known from knowledge-based systems is used for the mod-
eling of procedural relationships. Reference [24] provides argumentation for why
rules are thought of as data in MOTAR. Rules are represented using an arrow head
that points from the condition of the rule to its conclusion. In Figure 9, Rule-1
exemplifies this; for further details, see [24].

Summary

MOTAR provides the database designer with new modeling constructs for describ-
ing time-varying attributes, both periodic and aperiodic, and for describing time-
varying relationships. These constructs “hide” the time attributes that would other-
wise be necessary.

2.5 The Temporal EER Model

The motivation for developing the Temporal EER (TEER) Model [12, 11] was that
its authors believe that it would be more natural to specify temporal data and tempo-
ral queries in a conceptual, entity-oriented model than in a tuple-oriented relational
data model. TEER does not add new syntactical constructs to the EER model; in-
stead, it gives new meaning to the existing EER modeling constructs making them
temporal.

The Representation of Time

The time representation is similar to that proposed by Gadia and Yeung [14] for
the relational model, but is adapted to the requirements of the ER model. Atime
interval, denoted by[t1, t2], is defined to be a set of consecutive equidistant time
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instants, wheret1 is the starting instant andt2 the ending instant. The distance
between two consecutive time instants can be adjusted based on the granularity of
the application to be equal to months, days, or other suitable time units. Atemporal
elementis a finite union of time intervals denoted by,{I1, I2, . . . , In} whereIi is an
interval in [0, now]. A temporal databasestores historical information for a time
interval [0, now] where 0 represents the starting time, of the database mini-world
application, andnow represent the current time which is continuously expanding.

The authors state that the TEER model has no limitations regarding support of
time dimensions, but due to space limitations, the articles consider only valid time.

The Model Components

The TEER model extends the EER model [10] to include temporal information
on entities, relationships, superclass/subclasses, and attribute. Since the graphical
representation of TEER model components is similar to that of the EER model
presented by Elmasri and Navathe [10], we will not explain it in detail. Instead, we
will concentrate our attention on the new meaning given to the syntactical constructs
of the EER model.
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Figure 10: A TEER Schema Modeling the Running Example

Entities and Entity types

In the TEER model, each entitye of entity typeE is associated with a temporal ele-
mentT (e) ⊆ [0, now] that gives thelifespanof the entity. The lifespan of an entity
can be a continuous time interval, or it can be the union of a number of disjoint time
intervals. In TEER, each entity type has a system-defined SURROGATE attribute
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whose value is unique for every entity in the database. The value of this attribute
is hidden from the user and does not change throughout the lifespan of the entity.
The temporal element of the SURROGATE attribute of entitye defines the lifespan
T (e) of the entity.

The temporal properties of weak entities are similar to those of regular enti-
ties, except that the temporal elementT (e) of each weak entity must be a subset of
the temporal element of its owner entity.

Attributes and Keys

The attribute types of the TEER model are the same as those of the EER model,
although they are all temporal. Thetemporal valueof each attributeAi of e, denoted
by Ai(e), is a partial functionAi(e) : T (e) → dom(Ai). This is also referred
to as atemporal assignment. The subset ofT (e) in which Ai(e) is defined and
denoted byT (Ai(e)) is called thetemporal element of the temporal assignment. It
is assumed thatAi has the value NULL or UNKNOWN during the time intervals
T (e)− T (Ai(e)).

To give an example of the above, consider the database described by Fig-
ure 10, and assume that the chosen granularity of time is a day. A particular EM-
PLOYEE entitye with lifespanT (e) = [7/1/90, now] may have the temporal
attribute values given in Figure 11.

SURROGATE(e) = {[7/1/90, now] → surrogate_id} (system generated)
ID(e) = {[7/1/90, now] → 98765}
First name(e) = {[7/1/90, now] → Chris}
Last name(e) = {[7/1/90, now] → Johnson}
Birth_date(e) = {[7/1/90, now] → 8/23/46}
Salary(e) = {[7/1/90,6/30/92] → $ 20K,

[7/1/92, now] → $ 30K}
Figure 11: Example of a Lifespan of an Entity

The following constraint apply to attributes and keys in the TEER model.
Simple single-valued attributes have at most one atomic value for each entity at
each time instant [t ]. Multivalued attributes can have more that one value for an
entity at a given time instant [t ]. For a given time instant [t ], the value of a compos-
ite attribute of an entity is the concatenation of the values of its components. The
temporal element of a temporal assignment of a composite attribute is the union
of the temporal elements of the temporal assignments of its components. A key
attribute is an attribute of an entity type with the constraint that at any time in-
stant [t ] in [0, now], no two entities will have the same value for this attribute.
TEER allows updates of key attributes since each entity is uniquely identified by its
system-defined SURROGATE.
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Relationship Types

Like entities of entity types, each relationship instancer is associated with a tempo-
ral elementT (r) that defines the lifespan of the relationship instance. A constraint
states thatT (r) must be a subset of the intersection of the temporal element of the
participating entities. That is,T (r) ⊆ (T (e1) ∩ T (e2) ∩ . . . ∩ T (en)) whereT (ei)
is the lifespan of thei’th entity participating inr. Relationship attributes are treated
similarly to entity attributes; the temporal valueAi(r) of each simple attributeAi
is a partial functionAi(r) : T (r) → dom(Ai) and its temporal elementT (Ai(r))
must be a subset ofT (r). The cardinality ratios of the participating entity types
have not been given any new meaning.

The TEER model also offers user-defined and predicate-defined superclass/
subclass relationships. An entitye of a superclassE will belong to a predicate-
defined subclassC throughout all time intervals where the defining predicate eval-
uates to true for that entity. For a user-defined subclass, the user specifies when
the entity is to be a member of the subclass. In either case, the entity will have a
temporal elementT (e/C) that specifies the time intervals during which it is a mem-
ber of the subclassC. The constraintT (e/C) ⊆ T (e) on temporal elements must
hold. Attributes of a subclass are treated similarly to other attributes; the temporal
elements of their temporal assignments must be subsets ofT (e/C).

Summary

TEER does not add any new syntactical constructs to the EER model, but changes
the semantics of all the standard EER constructs, making them temporal. TEER do
not provide any mapping from TEER diagrams to any implementation model.

2.6 The Semantic Temporal EER Model

The Semantic Temporal EER model (STEER) [8, 9] was developed in order to
compensate for a lack of consideration of the semantics associated with time in pre-
vious research that had concentrated on temporal data models and query languages
in the context of the relational model and not so much in the context of concep-
tual data models. STEER introduces a new classification concept for temporal and
conceptual objects and provides guidelines for identifying objects as conceptual or
temporal.

The Representation of Time

The representation of time in STEER is very similar to the representation of time
in the TEER model just surveyed. Actually, the only difference is that the time
domainT of the database application is expanded fromT = {t0, t1, t2, . . . , tnow}
to T = {t0, t1, t2, . . . , tnow, tnow+1, . . . }. That is, it is now possible to reference
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future time points. NULL is used to represent the unknown time point, andtnow is
used to represent the current time point. STEER only supports valid time.

The Model Components

The STEER model distinguishes between conceptual and temporal entities. A con-
ceptual entity is treated as an object with permanent existence. That is, once an
entity is created in the database, it can be referenced at any future point in time.
A temporal entity—also called an entity role because it models one of the several
roles that a conceptual entity can participate in over time—on the other hand, has
a specific lifespan describing its existence. STEER distinguishes between temporal
and non-temporal attributes, and it differentiates between temporal and conceptual
relationships as well. It also defines temporal constraints among entity roles and
conceptual and temporal relationships.
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Figure 12: The Running Example Modeled Using the STEER Model

Conceptual Entities and Their Entity Roles

To understand the idea behind the distinction between conceptual entities and entity
roles, consider an example. Initially, note that entities from the modeled mini-world
need to be represented in the database when they become of interest. For example,
students exist in the mini-world as persons. However, they do not become of interest
to a university before they have been accepted at the university. At that point, the
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university might want to record previous information about the students. Then,
when students leave the university, they often remain of interest to the university for
some time. So the conceptual existence of an entity does not directly correspond
to the birth, dead, or change of the entity. In this example, persons are modeled as
conceptual entities, and (persons in their roles as) students are modeled as entity
roles.

Conceptual entities describe the conceptual aspects of the real world. A con-
ceptual entity type is a set of conceptual entities of the same type. Conceptual entity
types are represented by rectangles in STEER diagrams; in Figure 12, Employee is
an example.

The temporal aspects of the real world are described by temporal entities
which are also calledentity rolesbecause they represent the active roles a con-
ceptual entity can participate in. Arole typeis a set of entity roles of the same
type. Each role type is associated with a single entity type called itsowner entity. A
role type is represented by a filled rectangle and connected to its owner entity type.
W_Employee in Figure 12 is an example. W_Employee models all the employees
currently employed by the company.

Each conceptual entitye is associated with anexistence time, ET . Thestart
time pointST of the existence time refers to the time when the entity was recorded
in the database. Theend time pointof an existence time is infinity because an entity
once created never ceases to exist. Hence,ET =[ST ,∞[.

Each entity rolero of a role typeRO is associated with a temporal element
T (ro) ⊂ [t0,∞[ that gives the lifespan of the entity role. The lower bound (start
time) tl of a lifespan[tl, tu] of an entity role must be closed;tl cannot be NULL
because the start time of an entity role cannot be unknown; nor can it betnow, since
the current time is a dynamic concept. The upper bound (end time)tu can either be
closed or open;tu can betnow if tl ≤ tnow or NULL if tl > tnow.

The association between a conceptual entity and its entity roles can be viewed
as some sort of superclass/subclass relationship with mutual inheritance of attributes
and relationship instances. The following set of rules clarify this relationship.

1. A role type has exactly one entity type as owner.

2. The start time of the lifespan of en entity role must be greater than or equal to
the start time of the owner entity.

3. A role type can only have temporal attributes.

4. Attributes of a role type are “public” to the owner entity type, and attributes
(temporal and non-temporal) of the owner entity type are “public” to all the
associated role types.

5. An entity role can access all relationship instances of relationship types in
which the owner entity participates, and, reversely, an entity can access all
relationship instances of relationship types in which the associated entity roles
participates.
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Non-temporal and Temporal Attributes

Non-temporal attributes can only be properties of conceptual entity types. The
value of a non-temporal attribute of an entity holds over the entire existence time
of the entity. Non-temporal attributes are represented with circles in diagrams. An
example is the non-temporal attribute ID of Employee in Figure 12.

Each entity is provided with a system-defined non-temporal SURROGATE
attribute whose value is unique for every entity in the database. The value is not
visible to the user and is never altered.

Each entity typeE or role typeRO may have a set of temporal attributes
TA1, T A2, . . . , T An, and each temporal attributeT Ai is associated with a domain
of values,dom(TAi). In STEER diagrams, temporal attributes are represented by
ellipses; an example is the temporal attribute profit of Act_Department in Figure 12.

The next definitions are very similar to those presented in Section 2.5. For en-
tity roles, the temporal value of each attributeTAi of ro, referred to asT Ai(ro) is a
partial function fromT (ro) to dom(TAi). The subset ofT (ro) in whichTAi(ro)
is defined is denoted byT (TAi(ro)). It is assumed thatTAi has NULL or UN-
KNOWN as its value during the intervalsT (ro)− T (T Ai(ro)). The similar defi-
nitions apply to entities, the only difference being thatT (ro) is replaced byET (e)
(i.e., the lifespan of entitye).

The partial function that describes the value of a temporal attribute is also
called a temporal assignment. The subset of time points during which a temporal
attribute is defined is called the temporal element of the temporal assignment. The
different types of temporal attributes are similar to those of the TEER model. For
non-temporal attributes of an entity, the temporal element of the temporal assign-
ment is equal to the existence time of the entity.

For an example of the above, consider the database described in Figure 12 and
assume that the chosen granularity of time is a day. A particular Employee entitye

with existence timeET (e) = [7/1/90,∞[may have the temporal attribute values
shown in Figure 13.

SURROGATE(e) = {[7/1/90,∞[ → surrogate_id}
(system generated and non-temporal)

ID(e) = {[7/1/90,∞[ → 98765} (non-temporal)
First name(e) = {[7/1/90,∞[ → Chris} (non-temporal)
Rank(e) = {[7/1/90,∞[ → Senior manager} (non-temporal)
Last name(e) = {[7/1/90, now] → Johnson}
Birth_date(e) = {[7/1/90,∞[ → 8/23/46} (non-temporal)
Salary(e) = {[7/1/90,6/30/92] → $ 20K,

[7/1/92, now] → $ 30K}
Figure 13: Temporal Attribute Values of the Entitye
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Conceptual and Temporal Relationships

A conceptual relationship typeR of degreen hasn participating entity typesE1,

E2, . . . , En. Conceptual relationship types cannot have role types as participants.
Each relationship instancer in R is ann-tuple〈e1, e2, . . . , en〉 with ei ∈ Ei . Each
relationship instancer in R has an existence timeET . The start time must be
greater or equal to the start time of the existence time of each of then participating
entities, i.e.,ST (r) ≥ ST (ei) for all ei . Conceptual relationships are represented
by diamonds in STEER diagrams. Worked_for in Figure 12 is an example.

A temporal relationship typeT R of degreen hasn participating entity types
or role typesO1, O2, . . . , On whereOi is either an entity type or a role type. Thus,
eachtemporalrelationship instancetr in T R is a n-tuple 〈o1, o2, . . . , on〉 with
oi ∈ Oi . Temporal relationships are represented by filled diamonds, and an example
in Figure 12 is Belongs_to. Each temporal relationship instancetr is associated
with a temporal elementT (tr) that give the lifespan of the temporal relationship
instance. This lifespan must be a subset of the intersection of the lifespans of the
involved entity roles and entities.

As for entities and entity roles, the association between a conceptual rela-
tionship type and a temporal relationship type can be seen as some sort of super-
class/subclass relationship. Two constraints are enforced on temporal and concep-
tual relationships.

First there is theR-existence Constraint. This constraint, denoted byR/T R,
holds between a conceptual relationship typeR and temporal relationship typeT R
where all the participating object types are role types if for eachtri = 〈ro1, ro2, . . . ,

ron〉 in T R, the following two conditions hold.

• There exists a corresponding conceptual relationshipri = 〈e1, e2, . . . , en〉 in
R such thatowner(roj) = ej for eachroj in tri .

• The start time of the lifespan oftri must be greater than or equal to the start
time of the existence time of the corresponding conceptual relationshipri .

Second, there is theR-lifespan constraint, denoted byT R/R. This constraint
holds between a temporal relationship typeTR where all the participating objects
are role types and a conceptual relationship typeR if for eachri = 〈e1, e2, . . . , en〉
in R, the following two conditions hold.

• There exists a corresponding temporal relationshiptri = 〈ro1, ro2, . . . , ron〉
in T R such thatej = owner(roj) for eachej in ri .

• The start time of the existence time of the conceptual relationshipri must be
greater than or equal to the start time of the lifespan of the corresponding
temporal relationshiptri .

The R-lifespan constraint is used to model the cases where a conceptual re-
lationship cannot exist until after a temporal relationship has started. For, example
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students cannot get transcript entries for courses untilafter they have enrolled. R-
existence and R-lifespan constraints are represented in STEER diagrams by placing
an oval with ane an al, respectively, on the line connecting the involved relation-
ship types.

Superclass/Subclass Relationships

Like the EER model, STEER supports the concepts of sub and super classes and the
related concepts of specialisation and generalization. A class is any set of entities;
hence, an entity type is also a class.

A member entity of a conceptual subclass represents the same real-world en-
tity as some member entity in its conceptual superclass. Thus, an entity cannot
exists in the database as a member of a subclass without also being a member of the
superclass. This implies that an entity that is a member of a subclass will have the
same existence time as the corresponding entity in its superclass.

Attributes of a superclass are inherited by its subclasses. A subclass entity also
inherits all relationship instances in which its corresponding entity in the superclass
participates. The graphical notation for superclass/subclass relationships is similar
to that of the EER model [10]. However, one should notice that when converting a
non-temporal EER diagram into an STEER diagram, many or most of the subclasses
are likely to become role types. An example of this is given in Figure 14 where the
non-temporal EER schema to the left is converted to the STEER diagram to the
right. This is also the reason why no conceptual entity type Manager exists in
Figure 12 and why the non-temporal attribute Rank has to be moved to Employee.

Employee

Secretary

Manager

l
l

Engineer

l

Active_Employee

Employee

Secretary Manager Engineer

Figure 14: Mapping Non-temporal Superclass/subclass Relationships to the TEER
Model

When role types participate in superclass/subclass relationships, two temporal
constraints may be indicated. An existence constraint holds between two role types
ROi (superclass) andROj (subclass) if for all rolesrojk in ROj , there exists a
role roil in ROi such thatrojk ≡ roil . Next, a lifespan constraint holds if the
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lifespan of any entity rolerojk in ROj is a subset of the lifespan of the entity
role roil in ROi with rojk ≡ roil . Notice that the lifespan constraint implies the
existence constraint, but not vice versa. In STEER diagrams existence and lifespan
constraints are represented the same way as R-existence and R-lifespan constraints.
Figure 12 contains an example of a lifespan constraint between W_Employee and
W_Manager is shown. Thel in the oval is replaced by ane if an existence constraint
is to be indicated.

Summary

STEER is a semantic temporal model where conceptual entities are considered to
exist forever (or more precisely, from when they become of interest to the applica-
tion), whereas the roles they participate in, i.e., the temporal entities, have lifespans
to determine their existence. The same distinction holds for relationships. A general
set of constraints for preserving temporal consistency is presented.

2.7 The Entity-Relation-Time Model

The Entity-Relation-Time (ERT) model exists in two versions, the original version
[35, 37] and a recent refinement [22]. We survey first the original model and then
discuss the refinements at the end.

The motivation for the development of the original ERT model was to meet
the need for conceptual models of enhanced system functionality. In ERT, this need
is addressed through the use of a conceptual modeling formalism that caters for the
modeling ofbusiness rules, time, andcomplex objects. This formalism is supported
at the database level by an extension of the relational model with temporal semantics
and an execution mechanism that provides active-database functionality.

In the description of ERT, the term class is used instead of the term type.
We will follow the description. The basic structures of ERT are those of the binary
entity-relationship model, with the exception that it regards any association between
objects as a relationship. Specifically, the distinction between “attributeships” and
relationships is avoided. The ERT model extends the ER model both in its semantics
and graphical notation in two directions: the modeling of time-varying information;
and the modeling of complex objects.

In the ERT model, the termtime-varyinginformation refers to pieces of in-
formation where the modeler wants to keep track of their evolution, i.e., wants to
record their variation over time.

The Representation of Time

Time is introduced in the ERT model via a distinguished entity class, thetime period
class, and the time period is considered the most primitive temporal notion in the
model. A time period starts and ends in atick and also has a duration expressed in
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ticks, i.e., a tick is defined as the smallest unit of time permitted in ERT. Each time-
varying entity class and relationship class is timestamped with a time period class.
That is, a time period with a specified granularity is assigned to every time-varying
piece of information that exists in an ERT schema.

When a time period class is associated with an entity class, it models the
lifespans of the entities in the class. The lifespan of an entity is also referred to
as itsexistence period. When a time period class is associated with a relationship
class, it models the time period during which a relationship is valid. This is referred
to as thevalidity periodof a relationship instance and models the period in time that
the relationships holds. This latter time notion thus corresponds to valid time.

A number of assumptions were made in order to increase the feasibility and
practicality of the proposed approach, including the following.

1. System-generated surrogates are used for unique identification of entities.

2. Reincarnation of entities is permitted, i.e., if an entity no longer is in the
database, meaning that the existence period of the entity ends in a tick less
than the current time, it can return using the same surrogate. This implies that
entities keep their identity through time.

3. Existence and validity periods should always be mapped onto the calendar
axis, i.e., they should be specified in absolute terms. That is,

• if the existence period of a timestamped entity is not specified explicitly
as an absolute value, then the current time is taken as start point of the
existence period, and

• if the validity period of a timestamped relationship is not specified ex-
plicitly as an absolute value, then the most recent starting point of the
existence times of the involved entities is taken as start point of the va-
lidity period of the relationship.

4. Non-timestamped entities and relationships are assumed to always exist, i.e.,
they exist from the system start-up time until the current time.

The Model Components

The most central concept of the ERT model is that of a class, defined in the usual
way. This means that the most primitive data abstraction is classification of indi-
vidual objects. Thus, in ERT schemas, entity classes, value classes, complex entity
classes, complex value classes, and relationship classes are specified.

Simple Entity Classes and Simple Value Classes

A simple object cannot be decomposed into other objects and hence has indepen-
dent existence—it is irreducible. The simple objects classes of the ERT model are
divided into two groups: simple entity classes and simple value classes.
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Figure 15: ERT Schema Description of the Running Example

A simple entity class is represented by a rectangle, and if the entity class is
time-varying, the rectangle is expanded with a "time box." An example of a time-
varying, simple entity class is Employee (shown in Figure 15), and an example of
non-timestamped entity class is Project.

A simple entity class can be derived. This implies that its instances are not
stored by default, but can be obtained dynamically when needed, by usingderiva-
tion formulas. A derived entity class is represented by a dashed rectangle. Derived
entity classes can be time-varying as well. For each derived entity class, there is
exactly one derivation formula that gives the members of that entity class at any
time. If the derived entity class is not timestamped, the corresponding derivation
formula instantiates this entity class at all times; whereas if the entity class is time-
stamped then the derivation formula obtains instances of this class together with
their existence periods.

A simple value class is represented by a rectangle with a black triangle placed
in the bottom right corner. Simple value classes cannot be time-varying. An exam-
ple of a simple value class is Name in Figure 15. A simple value class can, like a
simple entity class, be derived and is then represented by a dashed rectangle with a
black triangle placed as before.

Complex Entity Classes and Complex Value Classes

A complex object is an object that can be decomposed into other objects, and thus
its existence depends of the existence of its component objects. The relationship be-
tween the complex object and its component objects is modeled using IS_PART_OF
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relationships. The complex object classes, like the simple objects classes, are di-
vided into two groups, complex entity classes and complex value classes.

Complex value classes are represented by a double rectangle with the black
triangle placed (as usual) in the inner rectangle. Complex value classes can only
have complex value classes or simple value classes as components, and hence a
complex value class cannot be time-varying. An example of a complex value class
is Name in Figure 15. The IS_PART_OF relationship cannot be seen at this level of
abstraction; an example of unfolding a complex class will be given later.

A complex entity class is represented by a double rectangle, and if it is time-
varying, the “time box” is added to the inner rectangle. The components of a com-
plex entity class can be both simple and complex, and they can be of value class
and entity class type. The time semantics of timestamped complex objects will be
explained in detail after the explanation of the IS_PART_OF relationship.

In the presentation of MOTAR, Project was described as a component of the
composite entity type Department. This could also have been done in ERT by
making Department a complex entity class, but then it would not have been possible
to describe the relationship between Project and, e.g., Employee.

Relationships Classes

In ERT there are four kinds of relationship classes. There are the user-defined
relationship classes, the IS_PART_OF relationships between complex objects and
their composite objects, the ISA relationships between subclasses and their super
classes, and the objectified relationships. We explain each in turn.

User-defined relationship classes are binary and are represented by small filled
rectangles; if they are time-varying, a “time box” is added. There are two con-
straints on the validity periods of a relationship class’ instances. First, the inter-
section of the existence periods of the participating entities must be non-empty.
Second, the validity period of the relationship instance must be a sub-period of the
intersection of the existence periods of the involved entities.

An instance of a user-defined relationship class is viewed as a named set of
two (entity or value, role) pairs, where each role expresses the way that a specific
entity or value is involved in the relationship. These two named roles are called
relationship involvementsand are required in a ERT schema for completeness rea-
sons. In addition to the relationship involvements, acardinality constraintis re-
quired to be specified for each entity class participating in the relationship class.
Each cardinality constraint is a pair (α, β) whereα indicates the minimum andβ
the maximum number of times that an entity or value can participate in a relation-
ship. The cardinality constraints are also used to specify whether the involvement is
optionalor mandatory. If the involvement is mandatory thenα=1, whereas ifα=0,
the involvement is optional.
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As an example, see the relationship class between Employee and Department
shown in Figure 15. The two relationship involvements are “belongs_to” and “em-
ploys.” The two corresponding cardinality constraints state that each Employee
instance is related to (i.e., belongs_to) precisely one Department instance, yield-
ing auniqueness constrainton Employee; and each Department instance is related
to (i.e., employs) from one to N Employee instances. If both the cardinality con-
straints of a relationship class between a entity class and a value class are (1,1), this
corresponds to the notion of akeyin database theory.

User-defined relationship classes can, like simple entity classes, be derived
and are then represented by dashed, non-filled rectangles; and they can be time
varying. As for a derived timestamped entity class, the derivation formula of a
derived timestamped relationship class specifies a validity period for each instances
of the class.

ISA relationship classes are first divided into two groups, partial and total,
that are further subdivided into overlapping and disjoint, yielding four types of ISA
relationship classes. The partial ISA relationship class is represented by a non-filled
circle with arrows flowing from the subclass to the circle and an arrow flowing from
the circle to the superclass. The total ISA relationship class is represented by a
filled circle. If there is more than one subclass and more than one arrow is pointing
into the circle, the relationship class is disjoint; otherwise the relationship class is
overlapping. The existence time of a specialized entity should be a sub-period of
the existence time of the corresponding parent entity.

MOTORDOOR
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Figure 16: Unfolding a Complex Entity Class

IS_PART_OF relationship classes are used to specify the relationships be-
tween the components of a complex object and the complex object itself. Each di-
rectly subordinate object class is IS_PART_OF-related to the complex object class,
which in turn is HAS_COMPONENT-related to the composite object class. This
composition mechanism does not make any distinction between aggregation and
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grouping, but is rather general. Whether the HAS_COMPONENT involvement is
one of aggregation or grouping can be indicated using cardinality constrains. That
is, if the cardinality is one of (1,1) or (0,1), the component is an aggregate, whereas
if it is (0,N) or (1,N) the component is a set. Figure 16 gives an example.

In ERT, complex objects can be used to model bothlogical part hierarchies,
where the same component can be part of more that one complex object, andphys-
ical part hierarchies, in which an object cannot be part of more than one com-
plex object at the same time. To achieve this, four different IS_PART_OF relation-
ship classes are defined using combinations of two orthogonal types of constraints,
namelydependencyandexclusiveness. The dependency constraintdependentstates
that when a complex object ceases to exist, all its components also cease to exist
(dependent composite reference), and the dependency constraintindependentstates
that if a complex object ceases to exist, this does not imply that the components
cease to exist (independent composite reference). The exclusiveness constraintex-
clusivestates that a component object can be part of at most one complex object
(exclusive composite reference) at a time, and the exclusiveness constraintshared
states that it can be part of more than one complex object at a time (shared compos-
ite reference).

No specific notation is introduced for these constraints. Rather, they are given
by the cardinality constrains of the IS_PART_OF relationship. That is, assume that
the cardinality constraint of the IS_PART_OF relationship is (α, β). Thenα = 0
implies independent dependency,α 6= 0 implies dependent dependency,β = 1
implies exclusive exclusiveness, andβ 6= 1 implies shared exclusiveness.

Timestamping in a time-varying IS_PART_OF relationship of a complex ob-
ject is subject to different time constraints depending on whether it has dependent
or independent dependency semantics and exclusive or shared exclusiveness se-
mantics. The dependency constraint dependent in time-varying IS_PART_OF rela-
tionships implies that the existence time of the complex object and the component
object should end at the same time as does the validity period of the IS_PART_OF
relationship. The exclusiveness constraint exclusive implies that if an object A is
part of objects B and C, then the period during which A is part of B should have
empty intersection with the period during which A is part of C.

In ERT, only binary relationship classes can be specified. Thus attributes can-
not be attached to relationship classes since this would make the relationship class
"ternary." As illustrated in Figure 17(a) this may yield problems. If we want to
add the class GRADE to this schema, we will face the problem of where to add it.
Specifically, GRADE has to be attached to either STUDENT or SUBJECT, both
of which are problematic. There is thus a need to model ternary relationships. To
achieve this, ERT permits relationship classes to participate in relationships. This
is callednominalisation, and the particular construct in which a relationship class
is viewed as an entity class is called anobjectified relationship. An objectified rela-
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Figure 17: Objectified Relationship

tionship must include the two corresponding involvements. The relationship class
that is objectified should always be many to many (the cardinality constraints on
both of the involvements must be (1,N)). The status of an objectified relationship
is that of an entity class. As such, it may participate in any relationshipexceptthat
of an ISA relationship. Also, the existence periods of the objectified timestamped
relationship class’ instances are the same as the validity periods of the correspond-
ing nominalised relationship class instances. The graphical notation of objectified
relationships is depicted in Figure 17(b).

Refining the Original ERT Model

The original ERT model has recently been refined [22] in two respects. First, the
definitions of temporal objects (entities or relationships) are given mathematically,
by specifying what constraints are placed on the existence or validity periods of an
object when atemporal markingis applied to it. Second, temporal markings are
used to represent temporal variation of object with respect to each other. In particu-
lar, the period in which a relationship involvement can exist is related to the period
in which the associated entities exist, and the periods in which entity subclasses ex-
ist are related to the period in which their superclass exists. Two distinct aspects of
the temporal nature of relationship involvements, calledhistorical perspectiveand
temporal variation, are identified. As a precursor to delving further into this, we
consider a refinement of ERT’s time periods.

A notation for describing the ticks when an instance of a temporal entity class
exists or a temporal relationship class holds is introduced. The period over which
an instance of a temporal entity class or temporal relationship classx exists/holds is
a setIx = {ta, tb, . . . , tz} whereta, tb, . . . , , tz are the ticks at whichx exists/holds.
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Since the series of ticks usually is continuous,Ix is called anintervalalthough what
actually has been defined is a set of intervals [22]. This definition of “intervals”
allows for the use of the usual set operators. To ensure a discrete bounded model,
the possible ticks of an interval are limited to the finite set ofℵ = {0 . . . τ }, and for
all x, the intervalIx will satisfy Ix ⊆ ℵ.

In the original ERT model, a relationship class could only be marked with a
T-mark indicating that the relationship was time-varying. The temporal marking
is refined in [22] to include H-marks and TH-marks. In the following, interval
IE ranges over all intervals associated with entity class E; and the properties of
intervals that we give must hold for all instances of the entity class. Thus stating
IE ⊆ ℵmeans that for all entitiese in E, Ie ⊆ ℵ.

If a relationship involvement exists for a subset of the ticks for which both the
entities it associates exist, and only associate entities which exist at the same time
tick, then the relationship is said to undergotemporal variationwith respect to the
entities it associates, and the relationship is T-marked.

If a relationship involvement exists at certain ticks between entity E1, which
exists at those ticks, and a entity E2, which exists atotherticks, then the relationship
is said to havehistorical perspective, and the relationship is H-marked. Note that
such relationships are asymmetric, since at any tick only E1 is required to exist; the
inverse relationship (from E2 to E1) may not hold at the same tick.

The above-mentioned terms can be combined. Saying that a historical per-
spective has temporal variation means that that one of the entities involved does not
have the perspective for its entire existence.

Four constraints on the validity period of an instance of a relationship class
results. Initially, letIE1 andIE2 be the intervals for which entity classes E1 and E2

exist. First, ifIR is the interval over which the instances of E1 and E2 are involved
in an unmarked relationship, thenIR = IE1 ∩ IE2. Second, ifIR is the interval
over which the instances of E1 and E2 are involved in a T-marked relationship class,
thenIR ⊆ IE1 ∩ IE2. Third, assume that instances of entity classes E1 and E2 are
related by R. If the instances of E1 and E2 are involved in R over periodIE1 andIE2,
respectively, and the relationship class R is H-marked, thenIE1 6= IE2 is allowed.
To exemplify an H-marked relationship class, consider the grandparent/grandchild
relationship between persons. Here, related persons need not exist simultaneously
for any tick; a grandparent may die before the birth of a grandchild. As we shall
see next, the historical perspective of a relationship has atemporal direction. An
H-marked relationship class R relating E1 and E2 is described as

• pastif E2 holds at ticks before the ticks at which E1 holds,

• currentif E2 holds at the same ticks for which E1 holds, and

• future if E2 holds at ticks after the ticks at which E1 holds.
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Finally, Boolean combinations of the above are possible. It follows that an un-
marked relationship class is merely acurrent historical perspective relationship
class. In the above example the temporal direction could bepastandcurrent (de-
pending on what is E1 and E2). The characteristics of H-marked relationships can
be described using derived entity classes, for details see [22]. Fourth, assume that
instances of E1 are involved in R over periodIE1R ⊆ IE1 and instances of E2 are
involved in the same relationship instance forIE2 and relationship R is TH-marked.
ThenIE1R 6= IE2 is allowed. This TH-mark can be used to model that we do not
want the grandparent to be related to the grandchild before the grandchild is actually
born.

Summary

The data model ERT extends a binary entity-relationship model with complex entity
classes and complex value classes. ERT provide the users with temporal markings
of time-varying entity and relationship classes, and instances of these classes are
timestamped with time periods. The temporal markings of classes have later been
refined.

2.8 The Temporal ER Model

The Temporal ER model (TER) [33] has it origin in the ER model. Most centrally,
TER replaces the ordinary cardinality constraints with snapshot and lifetime car-
dinality constraints. This permits a refinement of the classification of relationship
types, thereby obtaining a total of six different classes of relationship types; and it
leads to a refinement of the optionality of relationship participation.

Designing a database using the TER model includes three steps. First, a TER
diagram is constructed that uses the two new types of constraints for describing the
time-varying aspect of relationship types. No time attributes are included. Then,
based on how often historic data is expected to be accessed, a particular algorithm
that translates TER diagrams into traditional ER diagrams is applied, leading to a
diagram with only regular cardinality constraints and with explicit time attributes.
Third, the ER diagrams is translated into relational tables using a standard mapping.

The Model Components

The key differences between TER and the (binary) ER model are the inclusion of
snapshot and lifetime cardinality constraints, and the intermediate step of trans-
forming TER diagrams to ER diagrams. Time is thus implicit in TER diagrams.
The TER diagram describing the running example is shown in Figure 18. In the
remainder of this subsection, we consider the cardinalities; the next subsection con-
siders the intermediate step.
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Figure 18: A TER Diagram of The Running Example

The modeling of time-varying information is improved in TER by replacing
the traditional cardinality constraints by two new types of constraints, the lifetime
cardinality, denoted by L[minL,maxL], and the snapshot cardinality, denoted by
S[minS,maxS]. For an example, consider the relationship type between entity types
Department and Project in Figure 18. Relationship types have two directions, with
each direction having a source and a target. In TER diagrams, the cardinality con-
straints are with respect to a direction of a relationship type, and they are placed
next to the target entity type, by the relationship type.

A lifetime cardinalityconstraint L[minL,maxL] states that the minimum and
maximum number of instances of the target entity related to one instance of the
source entity over all of time isminLandmaxL, respectively. Similarly, asnapshot
cardinalityconstraint S[minS,maxS] states that the minimum and maximum number
of instances of the target entity related to one instance of the source entity at any
single point in time isminSand maxS, respectively. Below, the conditions that
define any valid combination of cardinalities for any given relationship direction in
TER are defined.

0< maxS and 0< maxL

0≤ minS ≤ maxS ≤ maxL
0≤ minS ≤ minL ≤ maxL

In the relationship type between Department and Project, a Department instance
(a “department”) may have from 1 ton associated Project instances (“projects”)
during its lifetime, but it may have at most 10 associated projects at any single
point in time. A project is associated with precisely one department at any single
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point in time; and a project is associated with precisely one department throughout
its lifetime. Thus, projects cannot be reassigned from one department to another.

As it is the case for cardinality constraints in the ER model, cardinality con-
straints in the TER model can also expressconnectivity. Thus, a set of connective
values of relationship type directions are defined as follows.

one for (maxS=) maxL= 1
oneT for maxS= 1 andmaxL> 1
many for maxS> 1

The introduction of the new connective valueoneT(“one at a time”) leads to
a refined classification of relationship types. Traditionally, there are three distinct
and exhaustive classes of relationship types:one-to-one, one-to-many, andmany-
to-many. While still disjoint, these classes are no longer exhaustive when snapshot
and lifetime cardinality constraints are used, as the classes no longer cover all valid
combinations of values forminSandminL in both directions. Therefore, three new
relationship classes are added to the before mentioned three, namelyone-to-oneT,
oneT-to-oneT, andoneT-to-many.

Up until now, theoptionality of a relationship-type direction has been im-
plicit. It has been assumed that ifminS = 0 in a direction, this implies that par-
ticipation is optional in that direction. But given the definitions of snapshot and
lifetime cardinalities, the notion of optionality can be refined. A relationship-type
direction issnapshot optional(optS) if minS = 0; otherwise, it issnapshot manda-
tory (mandS). A relationship-type direction islifetime optional(optL) if minL = 0;
otherwise, it islifetime mandatory(mandL). The refinement implies that columns
in the relational tables, that result from snapshot mandatory directions of relation-
ship types are not allowed to have null values. The following holds for the refined
optionalities:

optL implies optS
mandS implies mandL
mandSandoptL are incompatible

In TER diagrams such as that in Figure 18, the entity types do not include
attributes that make is possible to distinguish different states of entities. For exam-
ple, there are no means of recording different states of Employee entities. These
means are implicit, and they are brought out by the mapping of TER diagrams to
ER diagrams, as described next.

Mapping TER Diagrams to ER Diagrams

One consequence of introducing the temporal aspects of relationships into TER is
that there now exists a basis for the semi-automatic incorporation of time-varying
data in relational tables. How applications are to deal with time-varying data largely
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depends on the volume of such data, the frequency of access to it, etc. TER provides
three general approaches of dealing with time-varying data. They are based on the
frequency of access to non-current data.

Never If there is no interest in the non-current data, there is no reason for storing
it. No provisions for retaining non-current data are needed; old data is simply
overwritten by new.

Occasional If the non-current data is accessed infrequently, it would be rather in-
efficient to store it together with the much more frequently accessed current
data. Thus, separating the current data from the non-current data at the con-
ceptual level simplifies the design process.

Frequent If the non-current data is anticipated to be accessed almost as frequently
as the current data, it is most efficient to store them together.

TER then provides three different algorithms for translating TER diagrams
into ER diagrams, one for each category. Figure 19 shows the result of using the
algorithms on a fraction of the running example.
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Figure 19: Mappings of TER Diagrams to ER Diagrams

The mappings only provide means of recording multiple states of time-varying
TER relationship types; while not documented, it should be straightforward to ex-
tend them to also provide means of recording multiple states of time-varying en-
tities and attributes. Note how lifetime and snapshot constraints are replaced with
appropriate regular cardinality constraints.

Summary

The TER model provides means for better time-varying data modeling. Specifically,
ordinary cardinality constraints are replaced with snapshot and lifetime cardinality
constraints. Using these, TER redefines the classification of relationships and the
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notion optionality. Specifically, a new,oneTcardinality is introduced. Time is
implicit in TER diagrams, but the temporal aspects are made explicit through the
mapping of TER diagrams to ER diagrams.

2.9 The TempEER model

The motivation behind TempEER2 [21] is to be able to capture temporal information
in a conceptual model (specifically, the EER model) and then, via an appropriate
mapping, in the relational data model.

In achieving this, TempEER does not add new syntactical constructs to the
EER model, but assumes a temporal dimension to the existing EER constructs.
The mapping to the relational-model level, adds two attributes, ValidTime and
TransTime, to all the relation schemas that a conventional mapping algorithm yields.
It is an underlying assumption that the TempEER model is a design model only and
that the implementation platform is relational.

The Representation of Time

TempEER captures both valid and transaction time, both of which are assumed to
have discrete domains, and different granularities may be specified for both of these
domains. Time intervals are used as valid-time values, and time instants are used as
transaction-time values.

Valid-time intervals are a subset of[0,UNTIL], with UNTIL being a time
value greater than or equal to the current time. Thus, the time domain for valid
times extends beyond that used in the TEER model (Section 2.5). Transaction times
never exceed the current time.

The Model Components

The TempEER model does not add any new syntactical constructs to the EER
model; rather, the temporal aspects are implicit in TempEER diagrams. The Tem-
pEER diagram of the running example is therefore identical to that of Figure 10.

Entities and Entity Types

In TempEER diagrams, each entity of an entity type is associated with alifespan
capturing the valid time of the entity. The lifespan can be a time interval or a
temporal element.

When mapped to a relational platform, an entity is represented by a set of
tuples where each tuple describes one state of the entity over time. An entity type
is mapped to a relation schema with the attributes dictated by a standard mapping
and with an interval-valued ValidTime attribute. Thus, any change to an attribute of

2The authors gave their model the same name as the TEER already proposed by Elmasri et al. We adopt
the name “TempEER.”
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an entity results in the creation of new tuple capturing the new state of the entity.
The lifespan of an entity is then the union of the ValidTime intervals in the set of
tuples that represent the entity. In addition to the ValidTime attribute, each tuple has
a TransTime attribute that records the insertion time of the tuple, making it possible
to capture the transaction time of each tuple.

To exemplify, let us reconsider the entity described by the example given in
Figure 11. This entity has lifespanT = [7/1/90,UNTIL] and is represented by the
following two tuples at the relational level.

The temporal information of weak entity types is stored exactly as for ordinary
entity types. The constraint that the lifespan of a weak entity must be a subset of
the lifespan of its owner entity is enforced (the interaction with transaction time is
not considered).

Attributes

The attribute types of TempEER are those of the EER model, with the exception
that their changing values over time are retained.

A single-valued attribute has one atomic value for any point in time; multival-
ued attributes can have more that one value at a given point in time; and the value
of a composite attribute at a given point in time is the concatenation of the values
of its components at that point in time.

The valid time associated with an attribute value can be deduced from the
tuples at the relational level representing the entity. For example, the temporal
element associated with the attribute value Johnson of the above entity is[7/1/90,
UNTIL], whereas the temporal element associated with the value 20K is[7/1/90,
6/30/92]. The temporal element of an attribute value of an entity must be a subset
of the lifespan of the entity.

Relationships Types

Each relationship instance of a relationship type is associated with a lifespan defined
in the same way as for entities. The lifespan of a relationship instance must be a
subset of the intersection of the lifespans of the participating entities.

Finally, TempEER also has superclass/subclass relationships. The lifespan of
a subclass entity must be a subset of the lifespan of its superclass entity.

Summary

The sparsely documented TempEER model does not add any new syntactical con-
structs to the EER model, but instead changes the meaning of the existing con-
structs. TempEER diagrams are mapped to tuple-timestamped bitemporal relation
schemas. Temporal constraints are introduced.
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Figure 20: The Relational Representation of an Employee Entity
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2.10 The TempRT Model

In a working paper, Kraft [20] proposes TempRT3 that incorporates valid time sup-
port into a binary ER model. To motivate his approach, he first considers capturing
valid time using explicit timestamp attributes, which is unattractive.

In his approach valid time is captured through temporal relationships, tempo-
ral entities, and temporal attributes. The basic temporal construct is the temporal
relationship type. While ER diagrams are usually translated to relational schemas,
in this model there is an extensional level with is own graphical notation associated
with the ER diagrams. In this notation, nodes represent the instances of entities and
the edges represent relations between instances.

The valid time domain employed is discrete, but is not otherwise described.

The Model Components

The model is based on a binary ER model, and Figure 21 exemplifies the notation.
In this model only entity types, described by rectangles, and relationship types,
described by “crows’ feet,” may be specified. The attributes in Figure 21 are actu-
ally shorthand for one-to-many relationship types between an entity type with all
possible values of some value domain as instances and the entity type having the
attribute. Two diagonal lines are used to indicate that a construct is temporal. For
example, the relationship type between Employee and Emp_Proj is marked as tem-
poral. The temporal markings of Employee and Emp_Proj are deviations from the
running example.

Department

# Name

Profit

ID

Budget

Project

Emp_Proj

Salary Employee

ID Firstname

LastnameBirthdate

Salary

Birthdate

Lastname Rank

FirstnameID

Manager

Hours/week

Figure 21: TempRT Diagram Modeling the Running Example

3The author has not given the model a name. To clearly identify the model, we adopt the name “TempRT.”
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Temporal Relationship Types

The basic temporal structure is the temporal relationship. The semantics of a tem-
poral relationship is an extension of the semantics of an ordinary relationship.

In Figure 22(a), on the left hand side, the non-temporal relationship between
Employee and Department is repeated, and on the right hand side, some instances
are shown. The meaning of the relationship is that every instance of Employee must
at any point in time be related to one and only one instance of Department, and every
instance of Department may be related to zero or more instances of Employee. Only
one (the current) department assignment of an employee is recorded. Thus, if an
employee is reassigned to a new department, the previous assignment is lost.

Salary DepartmentEmployee

ID Firstname

Birthdate

# Name

Lastname Profit

t 1

t 2

t 3

t 4

1t 2t 3t t 4

now

time

Administration

Alice

Sales

Development

Description level Instance level

Michael

Janice

Alice

John

Mary

Peter

Sales

Development

Administration

Salary DepartmentEmployee

ID Firstname

Birthdate

# Name

Lastname Profit

(a)

(b)

Figure 22: Temporal Relationships

In Figure 22(b), the relationship type is considered to be temporal. The se-
mantics of the temporal relationship type is almost the same as for the non-temporal
relationship type. Every Employee instance still has to be related to one and only
one instance of Department at any point in time. The difference is that temporal
relationships are timestamped and retained. As an illustration of this, the right hand
side of Figure 22(b) gives the employment history of Alice. At timet1, Alice be-
comes associated with Sales, and at timet2 she is associated with Development.
Then att3 she is attached to Administration, and lastly, at timet4 she returns to
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Sales. The union of all the timestamps of a temporal relationship between two
instances describes the lifespan of the relationship.

Temporal Entity Types and Attributes

Entity types do not have to be temporal. A non-temporal entity that participates in
a temporal relationship cannot ever be changed or deleted. If this consequence is
unwanted, the concept of lifespans has to be added to the instances, making them
temporal.

The lifespan of an instance is modeled through temporal relationships. Specif-
ically, a universal entity typeU with only one instance is introduced. This entity
type is connected, using a temporal relationship type, with the entity type we want to
be temporal. Figure 23(a) illustrates this. The time in which an Employee instance
references the U instance gives the lifespan of the Employee instance. Figure 23(b)
shows the shorthand used in the model.

Temporal attributes are also defined using temporal relationships. As men-
tioned, a (non-time-varying) attribute is a shorthand for a regular many-to-one re-
lationship between an entity with all possible values of some value domain as in-
stances and the entity having the attribute. In order to make an attribute temporal,
the ordinary relationship between the entity having the attribute and the entity mod-
eling the value domain is replaced by a temporal relationship.

Salary Employee

ID Firstname

Birthdate Lastname

1

USalary Employee

ID Firstname

Birthdate Lastname

(a) (b)

Figure 23: Temporal Entity Types

Summary

The TempRT model makes it possible to specify temporal relationships, temporal
entities, and temporal attributes. The temporal entities and attributes are defined by
temporal relationships.

2.11 TERC+

The motivation for the development of TERC+ [39] was to provide users with a
temporal conceptual model better suited for the design of temporal application than
the temporal relational data models described in the literature. TERC+ is a temporal
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extension of the ERC+ model [25], and it is part of a methodology for developing
temporal applications.

The Representation of Time

TERC+ adopts a linear and discrete model of time, and time points are calledin-
stants. TERC+ also defines intervals and temporal elements: an interval is repre-
sented by a pair of instants, and a temporal element is a union of disjoint intervals.
The model support different granularities, e.g., year, day, hour, and minute, but
supports valid time only.

The meaning of the new modeling constructs of TERC+ follow from their
mapping to corresponding ERC+ modeling constructs, making explicit the infor-
mation implied by the new modeling constructs. ERC+ diagrams may be further
mapped to the relational model.

The Model Components

TERC+ includes four kinds of modeling constructs, each with a temporal coun-
terpart: attribute types, entity types, relationship types, and dynamic relationships
types. The model provides new notations for the temporal counterparts of these
construct. When describing these constructs in the following, we use the diagram
in Figure 24 for exemplification.
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Department

Project
ID

Manages

Belongs_to

join_date

Profit

Hours/week

Birth_date Name

First

Salary

# Name

Budget

Start_date Type
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Last

Employee

Dependent

RelationshipName

Manager

Responsible_for
h(10)

Figure 24: Describing the Running Example Using TERC+
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Attributes

There are two types of attributes in the model: simple and complex (composite)
attributes. Both types of attributes can be either single-valued or multi-valued, and
the presence of an attribute value can be mandatory (non null) or optional (null
allowed). This is expressed by static cardinality constraints in the diagrams. A
static cardinality constraint for an attribute is expressed by the lines connecting the
attribute to its entity/relationship type, and the syntax is given in Figure 25. The
meaning is given by the pairs of numbers in parentheses to the right of the lines.
The first integer indicates if the attribute value is mandatory (1) or optional (0). The
second integer indicates if the attribute is single-valued (1) or multi-valued (n). A
static cardinality constraint for an attribute has to hold at any point in time. The
same notation is used to express static participation constraints for the participation
of entity types in relationship types.

Identifiers (key attribute values) of entity types cannot ever be reused, e.g.,
once an employee entity is assigned a value of the ID attribute, this value cannot be
assigned to another employee entity, not even if the entity is deleted. Key attributes
are underlined in the diagrams.

(1,1) (1,n)

(0,1) (0,n)

Figure 25: The Static Cardinality Constraints for Attributes and Relationship Types

Attributes can be temporal, which is indicated by placing a clock symbol be-
hind the attribute names. For example, the Salary attribute of the Employee entity
type in Figure 24 is temporal. This means that the valid time of the attribute is
captured. For this purpose, each value of a temporal attribute is associated with a
temporal element recording the times during which the value is valid. It is assumed
that the attribute value is undefined (unknown or inapplicable) for points in time
that are not included in its temporal elements.

For temporal attributes, a temporal cardinality,h(max), can be specified, lim-
iting the number of values an attribute can have over the life-time of its entity. The
default temporal cardinality ish(n) and is omitted from the diagrams. For a com-
plex attribute, the temporality may be attached at any level. That is, a non-temporal,
complex attribute may have temporal components.

The meaning of the temporal attributes are defined in terms of composite at-
tributes in the ERC+ model where the temporal information becomes explicit. The
translation from TERC+ diagrams to an equivalent ERC+ diagram is very simple.
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Figure 26: Transforming Temporal Attributes to ERC+ Diagrams [39]

Figure 26 shows the transformation for temporal attributes.

Entity and Relationship Types

Entity types are represented by rectangles and may be regular or composite. Com-
posite entity types are built from regular and composite entity types. In Figure 24,
Employee is a temporal regular entity type. Entity type Department is related to
Project by means of an aggregation link (part-of-relationship, described in the fol-
lowing). Department entities thus contain Project entities, and Department is a
composite entity type.

Both regular and composite entity types can be temporal. A temporal entity
has associated a life cycle that encodes three possible states that an entity can be in.
Each state is associated with a temporal element that records the time the entity is
in that particular state. The three states are:active, e.g., an employee is active in the
company;suspended, e.g., an employee is on sabbatical, anddead(deleted), e.g.,
an employee is no longer with the company. That is, a life cycle consists of up to
three different (state, temporal element) pairs.

The meaning of a temporal entity type as shown in Figure 27. The temporal
information is made explicit by adding a multi-valued composite attribute, called
life-cycle, to an entity type in a ERC+ diagram.

TERC+ supports dynamic and traditional relationship types. Briefly, the for-
mer are used to describe inter-object behavior. There are four types of dynamic
relationship types.Transition relationshipsexpress that entities may change their
classification, e.g., a student graduates and becomes an alumni.Generation rela-
tionshipsexpress the generation of entities by others, e.g., a land parcel may be
split into several smaller parcels.Timing relationshipsdescribe temporal relations
between entities, e.g., before or after. For example, a Storm may precede a Land-
slide. Finally,Time-based aggregationslink entities to their snapshots, that is, the
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Figure 27: Transforming Temporal Entity and Relationship types to ERC+ Dia-
grams [39]

composite entity type is temporal while the component (the snapshot) is not. For
further description of the dynamic relationship types, see [39]

There are three kinds of traditional relationship types, each of which is illus-
trated in Figure 24 and is explained next.

• Is-a Relationships.These are represented by linking two entity types with a
solid line, with an arrow pointing from the subclass to the superclass. In an
is-a relationship, the instances of the subclass represent the same real-world
instances as the instances of the superclass. In the figure, Manager is a sub-
class of Employee.
Inheritance of attributes and temporal specifications are supported. Thus in-
stances of the subclass have the same attributes and temporal support as the
instances of the superclass, in addition to the attributes specified for the sub-
class. A subclass cannot be non-temporal if the superclass is temporal.

• Relationship Types.These are relationships between entity types and are rep-
resented by linking the participating entity types to a rectangle with rounded
corners. The lines linking the entity types and the relationship type express
the static participation constraints that apply, as discussed for attributes.n-ary
relationship types are allowed.
Relationship types can be specified as temporal, and the instances of tempo-
ral relationship types are associated with a life cycle in the same manner as
instances of temporal entity types. For temporal relationship types, as for tem-
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poral attributes, a temporal cardinality may be specified for each entity type
participating in the relationship type, stating how many relationships an entity
is allowed to participate in during the life cycle of the entity. For example, the
h(10) in Figure 24 is limiting the number of projects an employee can work
on over his/her employment to 10. Only temporal entity types can participate
in temporal relationship types. The meaning of a temporal relationship type
is captured in the same manner as for temporal entity types.

• Aggregation links. These are special, directed binary relationships linking
two entity types, also known as part-of relationships. Aggregation links are
represented by linking the component entity type to a relationship type with
an arrow pointing towards the component entity type, and the usual participa-
tion constraint linking the composite entity type to the relationship type. To
further indicate that the relationship type is an aggregation link, the relation-
ship type is marked with a small diamond. In Figure 24, the relationship type
Responsible_for is an aggregation link.
Aggregation links can be specified as temporal; and as for temporal relation-
ship types, only temporal entity types can participate in temporal aggregation
links.

Summary

TERC+ provides the database designer with new modeling constructs for describ-
ing temporal attributes, temporal entities, and temporal relationships. Furthermore,
TERC+ provides notation for describing inter-object behavior.

3 Design Criteria and Evaluation of the Models

In Sections 2.3 to 2.11, we described all temporal ER models known to us. It is
a common characteristic that few or no specific requirements to the models were
given by their designers. To compare and better understand the models, this section
defines a comprehensive set of design criteria for temporal ER models and evaluates
the models against these criteria. We have chosen to also evaluate the EER model
against the criteria. When doing so, the model will be treated as a temporal model,
capturing time through timestamp attributes.

We have identified a total of 19 design criteria covering time semantics, model
semantics, temporal functionality, and user-friendliness. The criteria are numbered
C1 through C19. With each criterion defined, we indicate its source, if possible.
We have attempted to only include criteria that have an objective basis for being
evaluated. Together, the criteria identify important aspects of designing a temporal
ER model. The possible outcomes of an evaluation of a model with respect to each
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criterion will be stated explicit together with the definition of each criterion, unless
the possible outcomes areN.A., Yes, andNo.

Figures 28, 29, and 30 present the results of the evaluations of evaluating the
models with respect to criteria C1–C3, C4–C13, and C14–C19, respectively. (This
grouping of the criteria into three tables is purely pragmatic.)

C1—Time Dimensions with built-in Support Valid and transaction time are
general—rather than application specific—aspects of all database facts. As such,
they are prime candidates for being built into a temporal ER model that is to be
used for both analysis and database design. Being orthogonal and independent
aspects of database facts, it is possible to support the two times independently.
Support for these times may take different shapes and may be more or less elab-
orate. Another kind of time exists, namely the so-calleduser-defined time(UDT).
This refers to “support” for temporal aspects with no built-in support in the model.
User-defined times are supported when time-valued attributes are available. These
are then employed for giving temporal semantics—not captured in data model, but
only externally, by the database designer—to the the ER diagrams. We will say
that a time is supported simply if some support has been documented. The possible
outcomes of evaluating a model against this criterion areUDT, VT , TT , andN.A.
(and combinations ofVT andTT ).

For a model to be considered temporal, at least one time dimension must be
supported. Almost all the models supportvalid time. The only model that does not
is the EER model that only supports user-defined time. All the models support user-
defined time.Transaction timeis supported by only TempEER. That is, the valid-
time aspect of a database application seems to be regarded as the most interesting
aspect to support, thereby aiming at high-fidelity modeling of the mini-world.

C2—New Temporal Constructs Two general approaches to providing tempo-
ral support exist. Withimplicit temporal support, explicit timestamp attributes are
“hidden” in the temporal semantics of the modeling constructs. For example, no
timestamp attributes are necessary on a temporal relationship type to indicate that
the instances of the type record their variation over time. With this approach, it is
possible to obtain a temporal ER model without adding any new syntactical con-
structs to the ER model. Rather, the existing ER constructs are simply made tempo-
ral by changing their semantics. For example, ordinary relationship types are given
temporal semantics, making their instances record variation over time, rather than
just single states. It is also possible with this approach to retain the existing ER
constructs and their semantics and add new temporal constructs to capture the time-
varying information. The new notation for a temporal relationship type in MOTAR
is an example. The extent of the changes made to the ER model may range from
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EER UDT none N.A.
RAKE UDT, VT temporal relationships types and attributes Optional
TERM UDT, VT history structures and patterns Optional
MOTAR UDT, VT temporal relationship types and attributes Optional
TEER UDT, VT temporal entity types, attributes, and relationship types Mandatory
STEER UDT, VT conceptual entity types, entity roles, temporal attributes, and con-

ceptual and temporal relationship types
Mandatory

ERT UDT, VT timestamped entity classes, relationship types, complex entity
classes, and temporal constraints

Optional

TER UDT, VT snapshot cardinalities, lifetime cardinalities, and OneT connectiveMandatory
TempEER UDT, VT, TT temporal entity types, attributes, and relationship types Mandatory
TempRT UDT, VT temporal relationship types, entity types, and attributes Optional
TERC+ UDT, VT temporal attributes, entity types, and relationship types Optional

Figure 28: Evaluation of Criteria C1, C2, and C3
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minor changes to a total redefinition of the model.
With explicit temporal support, the semantics of the existing ER constructs are

retained. With this approach, timestamp attributes are explicit. Any new modeling
constructs are notational shorthands introduced to make the modeling of temporal
aspects more convenient.

Nearly all the models have added new temporal constructs. Some of the mod-
els have changed the semantics of the ordinary ER model constructs entirely. These
models are TEER and TempEER. Other models have retained the old ER constructs
and have added new temporal constructs. These models include TERM, MOTAR,
ERT, TER, TempRT, and TERC+. RAKE does not add any new constructs to the
ER model; instead, it introduces notational shorthands for certain patterns made up
of ordinary ER constructs. However, we will consider these notational shorthands
to be temporal constructs. One model has both changed the semantics of the ER
constructs and added new temporal constructs, namely STEER. The specific names
of the added constructs can be seen in the third column of Figure 28 (they are men-
tioned in the order in which they are introduced in this paper). The EER model has
not added any new constructs—it captures time solely through timestamp attributes.

C3—Mandatory vs. Optional Use of Temporal Constructs The extent of chan-
ges made to the notation of the ER model determines whether the use of the tem-
poral constructs added to the model are mandatory or optional. If all the original
ER modeling constructs have simply been made temporal, the original constructs
are no longer available. Mandatory use of the temporal constructs means that the
designer cannot use non-temporal constructs in diagrams. Optional use of the tem-
poral constructs provides the designer with the possibility of mixing temporal and
non-temporal constructs in the same diagram. The possible outcomes of evaluating
the models against this criterion areN.A., Mandatory , andOptional.

The models with mandatory use of the temporal constructs are TEER, STEER,
TempEER, and TER. TEER and TempEER have changed the semantics of all the
original ER model constructs to be temporal. STEER has—besides making the
original ER constructs temporal—added new temporal constructs to the model.
Since TER has replaced the ordinary cardinality constraints with two new ones, and
it is mandatory to specify the constraints, it becomes mandatory to use the temporal
constructs, even if the users later decide to only record a single state of data.

The models that have retained the ordinary ER constructs and have added new
temporal construct have optional use of temporal constructs. Thus, it is possible to
mix temporal and non-temporal constructs in these models that include MOTAR,
ERT, TempRT, and TERC+. TERM has optional use of history structures and his-
tory patterns since all attributes (inclusive the existence and roles attributes) can be
declared as constant. RAKE also has optional use of the temporal constructs since
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these are notational shorthands for patterns made up of ordinary ER constructs.
Since the EER model has not added new constructs, N.A. is the result of evaluating
the model against this criterion.

C4—Data Types Supported for Valid Time Different data types for implicit or
explicit timestamps may be used for indicating the valid time of an object, e.g., an
attribute value or a relationship. Possible time data types include instants, intervals,
and temporal elements. For example, one option is to associate valid-time intervals
with attribute values of entities. Another option is to timestamp attribute values
with valid-time elements, finite unions of intervals. An attribute value may also
be defined as a function from a time domain to a value domain. In this way, an
attribute may associate a value with a set of time instants. We will consider this
element timestamping, and we will also consider the timestamping with sets of
instants and intervals as being element timestamping. Since all models surveyed
adopt a discrete model of time, we will not distinguish between support for closed
versus open or half-open intervals.

A data model may provide the database designer with a choice of data types.
This may increase the utility of the model. Possible outcomes includeN.A., instant,
interval , andtemporal element. All three data types mentioned may encode va-
lidity for durations, and the instant data type may also encode validity for single
instants of time. In the former case, instants have associated interpolation functions
(see Criterion C8). The impact of which data types are available is dependent on
whether the model under consideration is used solely as a design model or is also
used as an implementation model, complete with database instances and a query
language.

The models that timestamp with instants include RAKE (events), TERM,
MOTAR, and TER. The models RAKE, TERM, ERT, TempEER, and TempRT
timestamp with intervals. The models TEER, STEER, and TERC+ timestamp with
temporal elements. Finally, this criterion is not applicable to the EER model, since
it does not support valid time.

C5—Data Types Supported for Transaction Time As valid and transaction
time have different semantics, the timestamp types available for the two times may
differ. The possible outcomes are as for valid time. TempEER is the only model
that supports transaction time. The timestamp used for transaction time in Tem-
pEER is instants (that encode durations). N.A. is indicated in the figure for all the
other models.

C6—Support for Multiple Granularities It may be that the temporal variability
of different objects in the mini-world are captured using times of different granular-
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C4 C5 C6 C7 C8 C9 C10 C11 C12 C13

EER N.A. N.A. No No N.A. No No No N.A. Yes
RAKE instant, interval N.A. No No No No No No (Yes) Yes
TERM instant, interval N.A. Yes Yes Yes Yes Yes Yes No No
MOTAR instant N.A. Yes No Yes No No No (Yes) Yes
TEER temporal element N.A No No No Yes Yes Yes No No
STEER temporal element N.A. No No No Yes+ Yes+ Yes No No
ERT interval N.A. No No Yes Yes Yes Yes (Yes) Yes
TER instant N.A. No No No No No No (Yes) No
TempEER interval instant No No No Yes Yes Yes No No
TempRT interval N.A. No No No Yes+ Yes+ No (Yes) Yes
TERC+ temporal element N.A. Yes No No Yes+ Yes+ Yes (Yes) Yes

Figure 29: Evaluation of Criteria C4—C13
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ities [38, 6]. They should then also be captured in the database using these different
granularities. For example, the granularity of a minute may be used when recording
the actual working hours of employees, while the granularity of a day may be used
when recording the department assignments of employees. Notice that this criterion
relates to valid time.

There are three models in which it is possible, at the conceptual level, to
specify the granularity of the timestamps. In MOTAR, the user is allowed to specify
the frequency of the recording of periodic attributes. In TERM, atomic histories
can have different time domains. In TERC+ the authors state that the granularity of
timestamps has to be specified but does not explain how this is done. The rest of the
models only briefly state that the granularity of the timestamps should be suitable
for specific applications and hence postpone the choice of granularity to the logical
design phase.

C7—Support for Temporal (Im-) Precision The temporal variability of differ-
ent objects in the mini-world may be known with different precisions [18, 4, 7, 5].
Although some imprecision may be captured using multiple granularities, granular-
ities are not a general solution. For example, the variability of an attribute may be
recorded using timestamps with the granularity of a second, but the varying values
may only be known to the precision of±5 seconds of the recorded value. This phe-
nomenon may be prevalent and important to capture in scientific and monitoring
applications that store measurements made by instruments.

The only model which support temporal precision is TERM, where it is pos-
sible to specify precision on the timestamps (and also the values of attributes).

C8—Temporal Interpolation Functions Temporal interpolation functions de-
rive information about times for which no data is explicitly stored in the database
(see, e.g., [18] and [17, pp. 35–40]). For example, it is possible to record times
when new salaries of employees take effect and then define an interpolation func-
tion (using so-called step-wise constant interpolation) that gives the salaries of em-
ployees at any time during their employment. In the scientific domain, interpolation
is particularly important, e.g., when variables are sampled at different rates.

User-definable temporal interpolation functions are supported by TERM, MO-
TAR, and ERT. In TERM, functions handle both incomplete and not-explicitly-
stored data, while the derivation functions in ERT only handle data not explicitly
stored. In MOTAR, rules can be considered as some sort of derivation functions.
The other models do not consider how to handle incomplete and not-explicitly-
stored data.
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C9—Lifespans of Entities The lifespan of an entity is the time over which the
entity exists in the mini-world. Entities may exist beyond the times when their
attributes have (non-null) values, making it impossible to infer lifespans from the
assignments of timestamps to attribute values. If the concept of lifespan of entities
is supported, this means that the model has built-in support for capturing the times
when entities exist.

Four models support the concept of lifespan for all entity types, namely TERM,
TEER, ERT, and TempEER. The lifespans for the entity types with constant exis-
tence in TERM and the lifespans for non-timestamped entity types in ERT are given
implicitly as the lifespan of the database. Some models support selective specifi-
cation of lifespans of entity types, indicated by anYes+, thus letting the database
designer decide whether or not to capture the lifespan of an entity type. These mod-
els are STEER, TempRT, and TERC+. The models that do not support lifespans of
entity types include RAKE, MOTAR, TER, and EER.

C10—Lifespans of Relationships The concept of lifespan is also applicable to
relationships, with the same meaning as for entities. When a model provides a built-
in notion of relationship lifespans, it may also enforce certain temporal constraints
that involve these lifespans. For example, it does not make sense for an entity to
have an attribute value at a time when the entity does not exist.

The models that support lifespans for all relationship types include TERM,
TEER, ERT, and TempEER. STEER, TempRT, and TERC+ support selective speci-
fication of lifespan of relationship types—for these, aYes+is indicated. The models
that do not support lifespans of Relationship types include RAKE, MOTAR, TER,
and EER.

C11—Temporal Constraints A temporal data model may include built-in tem-
poral constraints and facilities for user-definable temporal constraints. If built-in
temporal constraints are not present, then the possibility of having illegal data is
present. For example, a (binary) relationship between two entities can usually not
exist if the entities do not exist. The presence of an appropriate set of (built-in)
constraints on the built-in temporal constructs is thus of essence. Next, it should
be possible for the database designer to specify additional temporal constraints.
For example, we have seen that the TER model (Section 2.8) supports two types of
temporal constraints on relationship types, namely snapshot and lifetime cardinality
constraints.

Temporal constraints are supported by TERM, TEER, ERT, STEER, TER,
TempEER, and TERC+ while the models RAKE, MOTAR, TempRT, and EER do
not support temporal constraints.
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C12—User-specifiable Temporal Support A temporal ER model offers user-
specifiable temporal support if it is up to the database designer to decide which
temporal aspects of data to capture. For example, a temporal ER model may provide
built-in support for both valid and transaction time, but a specific application may
only require support for transaction time. It should then be possible to omit support
for valid time.

The models RAKE, MOTAR, ERT, TempRT, and TERC+ partly satisfy this
criterion. In RAKE, MOTAR, ERT, TempRT, and TERC+ the temporal support
is valid time, but only if the database designer uses the temporal constructs of the
models. So does TER, but not at the conceptual level—only when translating the
TER diagram to ER diagrams. If the designer wants to record the variations of
data, the temporal dimension supported is valid time; and if no access is wanted, no
temporal support is given. This criterion is not applicable to the EER model which
supports only user-defined-time. The remaining models have enforced temporal
support.

C13—Upward Compatibility A temporal ER model is upward compatible with
respect to the conventional ER model if any legal conventional ER diagram is also
a legal ER diagram in the temporal model and if the meanings of the diagram in
the two models is the same. Upward compatibility is very important because it
enables legacy ER diagrams to be used immediately in the new temporal model.
Investments in legacy systems are protected, and a basis for a smooth transition to
a temporally enhanced ER model is provided [32].

When evaluating a model against this criterion, we will evaluate whether
the model is upward compatible with respect to the ER model that it extends, if
specified; otherwise, we will use Chen’s ER model [2] for models without su-
perclass/subclass relationships and the EER model [10] for models with super-
class/subclass relationships.

Six models—RAKE, MOTAR, ERT, TempRT, and TERC+—are upward com-
patible with respect to their basic models. In these models, no syntactical constructs
from the basic models have been given new semantics. The EER is also upward
compatible with itself; this holds trivially true. TERM is not upward compati-
ble since its existence attributes have to be specified for all entity and relationship
types. TEER and TempEER are not upward compatible with respect to the EER
model because these models have changed the semantics of the existing EER mod-
eling constructs. STEER has both changed the semantics of the original model and
added new syntactical constructs. Due to the change of semantics of the original
model, STEER is not upward compatible with the EER model. TER is not up-
ward compatible with the ER model since it has replaced the ordinary cardinality
constraints with the snapshot and lifetime cardinality constraints.
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C14 C15 C16 C17 C18 C19

ERR N.A. Yes Relational model Yes Yes Yes
ER model

RAKE Yes ? Relational model No Yes No
TERM Yes ? Relational model No No No
MOTAR Yes ? Relational model No Yes No
TEER Yes ? None Yes Yes (Yes)
STEER Yes N.A. None Yes Yes No
ERT N.A ? Relational model Yes Yes Yes
TER N.A Yes ER model No Yes Yes
TempEER Yes ? Relational model Yes Yes (Yes)
TempRT Yes Yes None No Yes No
TERC+ Yes Yes ERC+ No Yes (Yes)

Figure 30: Evaluation of Criteria C14–C19

C14—Snapshot Reducibility of Attribute Types Temporal ER models that add
temporal support implicitly may include temporal counterparts of the ordinary at-
tribute types, i.e., provide temporal single valued, temporal multi-valued, temporal
composite, and temporal derived attribute types. These temporal attribute types
may be snapshot reducible [28] with respect to their corresponding snapshot at-
tribute types. This occurs if snapshots of the databases described using the tempo-
ral ER diagram constructs are the same as databases described by the corresponding
snapshot ER diagram where all temporal constructs are replaced by their snapshot
counterparts. For example, a temporal single-valued attribute is snapshot reducible
to a snapshot single-valued attribute if the temporal single-valued attribute is single
valued at each point in time.

Generalizing snapshot constructs this way yields a natural temporal model
that is easily understood in terms of the conventional ER model.

The models that have snapshot reducible attribute types are RAKE, TERM,
MOTAR, TEER, STEER, TempEER, TempRT and TERC+. RAKE has only single-
valued attribute types. These are snapshot reducible since the temporal attributes are
modeled through relationships treated as weak entity types owned by time-period
entity types, thereby having ENDstamp as part of the key. This structure cannot
have more than one value at any point in time. TERM has only single-valued at-
tributes, and all variable attributes have a atomic history structure to ensure that
the attribute only have one value at a time. The temporal attributes of MOTAR are
also snapshot reducible since the mapping algorithm ensures that timestamps are
made part of the key in the relations representing the attributes. TEER, STEER,
TempEER and TERC+ all have temporal single-valued, multivalued, and compos-
ite attribute types. TEER, STEER, TempEER have the mutually same semantics
for these attribute types, and the semantics state that they are snapshot reducible.
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The semantics of the static cardinality constraints for TERC+ ensure that the at-
tributes of this model are snapshot reducible. TempRT only has single-valued at-
tribute types, and since the temporal attributes of this model are defined using the
temporal relationship that is snapshot reducible, see the next criterion, the temporal
attributes must be snapshot reducible. Because ERT, TER, and EER do not have
temporal attributes, this concept is inapplicable to these models.

C15—Snapshot Reducibility of Relationship Constraints Snapshot reducibil-
ity also applies to the various constraints that may be defined on relationship types,
including specialized relationship types such as ISA (superclass/subclass) and PART-
OF (composite/component) relationships. For example, the temporal cardinality
constraint 1–N on a binary temporal relationship type is snapshot reducible to the
snapshot cardinality constraint 1–N on a binary snapshot relationship type if at any
single point in time, the 1–N snapshot constraint applies to the possible instances
of the temporal relationship type.

Only four models have snapshot reducible relationship constraints: TER, by
virtue of the semantics of the snapshot cardinality constraint; TempRT, due to the
semantics given to its temporal relationships (these semantics explicit states that the
cardinality constraints given by the relationship should hold at any point in time);
TERC+, by the semantics which explicit state that the static cardinality constraints
hold at any point in time; and EER, trivially, because it does not propose any addi-
tional types of relationships and constraints. The models RAKE, TERM, MOTAR,
TEER, ERT, and TempEER do not describe what the meaning of the different re-
lationship constraints that can be specified are in a temporal database. This is the
reason for the question marks in Column C15 of Figure 30. The STEER model
does not include cardinality constraints on relationship types, making this criterion
inapplicable.

C16—Mapping Algorithms Available A mapping algorithm translates an arbi-
trary ER diagram in a temporal ER model into a corresponding database schema
in another data model. The temporal ER models are typically considered to be de-
sign models. Upon designing an ER diagram, the diagram is accordingly mapped
to a schema of an available DBMS, i.e., is mapped to an implementation platform.
The most popular type of mapping is to the relational model (or the platform of a
specific relational product). The benefit of a mapping algorithm for a temporally
extended ER model to the relational model is that a single mapping algorithm con-
trols the resulting relational database schema. As an alternative, it is also possible
to map temporal ER diagrams to conventional ER diagrams. The benefit of this
approach is that the wide selection of mappings from the conventional ER model to
the relational model may be exploited.
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Most of the models provide mappings to regular ER diagrams or the relational
model. The only model where temporal ER diagrams can be mapped into both ER
diagrams and the relational model is RAKE. The TER model provide an algorithm
that transforms TER diagrams into ER diagrams, which may then be transformed
into relational schemas by a standard algorithm. It is demonstrated how to trans-
form TERC+ diagrams into ERC+ diagrams. The models that provide an algorithm
for translation into a relational schema include TERM, MOTAR, ERT, and Tem-
pEER. Models TEER, STEER, and TempRT do not specify any mappings of their
diagrams. One good reason for an absence of mappings is that the models them-
selves may be considered implementation models, see the discussion of the next
criterion.

C17—Query Language Provided As an alternative to mapping ER diagrams to
the schema of a separate implementation platform, another approach is to assume
a system that implements the ER model directly. With this approach a mapping to
an implementation platform is not required. Instead, a query language should be
available for querying ER databases.

No query languages is provided for the following models: RAKE, TERM,
MOTAR, TER, TempRT, and TERC+. A temporal extension of the query language
GORDAS is provided as query language for the models TEER and STEER. The
ERT model is provides with a query language called the External Rule Language.
As query language for the TempEER model, a temporal extension of SQL is pro-
posed.

C18—Graphical Notation Provided While it is usually assumed that a graphi-
cal notation is available for describing ER diagrams, this needs not be so. It is also
possible to provide only a textual notation for describing ER diagrams. It is gener-
ally believed that ER models with a graphical notation have an advantage over ER
models with a programming language-like notation. Graphical notations tend to be
easier to learn, and we believe that the simplicity of the graphical ER notation is
one of the main reasons for its success.

The only model that does not have a graphical notation is the TERM model,
which has a Pascal-like syntax.

C19—Graphical Editor Available If the notation of a model is graphical, then
the presence of an editor supporting the model is very important if the model is to
be used widely. Potential users should have the opportunity to try and use at least
some prototype of an editor supporting the model.

Two models, namely TER and ERT, come with an editor to support their use.
The editor for TER is called MODELLER [33] and is a commercially available
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product; and the editor for ERT is called the ERT-TOOL. The authors of the TERC+
model states that an editor for the model is currently under development and for
this reasonYesin parentheses has been indicated for this model. Models TEER and
TempEER can use editors that supports the EER model for schema design, but not
for mapping to their implementation models. Thus, aYes in parentheses has been
indicated for these models. Editors for EER exist in the public domain. No other
model is accompanied by an editor.

4 Conclusions and Research Directions

This section first concludes on the paper, then discusses research directions.

4.1 Conclusions

This paper has surveyed ten proposals for extending the ER model to better capture
the temporal aspects of data. Although the detailed motivation for the development
of each proposal varies, it is a general observation that while temporal aspects of
data are prevalent, the basic ER (and EER) model in itself does not provide adequate
support for elegantly and concisely capturing these aspects.

The survey has emphasized the common aspect of the temporal ER models,
namely their use as design models that are employed to capture, in a conceptual
model, a database design that is implemented in a separate data model, typically
the relational model. This yields a focus on structural aspects, rather than on ER
query languages.

The proposed extensions are based on quite different approaches. One ap-
proach is to devise new notational shorthands that replace some of the patterns that
occur frequently in ER diagrams when temporal aspects are being modeled. One
example is the pattern that occurs when modeling a time-varying attribute in the ER
model. Another approach is to change the semantics of the existing ER model con-
structs, making them temporal. In its extreme form, this approach does not result
in any new syntactical constructs—all the original constructs have simply become
temporal. With this approach, it is also possible to add new constructs. Yet another
approach is to retain the existing ER constructs.

Many of the models assume that their schemas are mapped to schemas in
the relational model that serves as the implementation platform. The algorithms
that map the schemas of these models to the relational model are constructed to
add appropriate time-valued attributes to the relation schemas. This corresponds to
how the ER model is (currently) used in industry. In contrast, three of the mod-
els we have examined are themselves implementation models and provide a query
language for the model.
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We have identified a total of 19 design properties that are relevant for the eval-
uation of temporal ER models and should be taken into consideration when design-
ing a temporal ER model. None of the 19 design properties are incompatible—they
can all be simultaneously fulfilled. We have evaluated the 10 models against the
design properties, and while no single model satisfies all the properties, the models
collectively provide good coverage of the design space. The models illustrate dif-
ferent ways of conveniently capturing the temporal aspects of data at the conceptual
level, and it is our contention that all the temporal ER models, to varying degrees,
have succeeded in more naturally capturing the temporal aspects of data than does
the ER model.

In our work with the models, we have come to the conclusion that the ap-
proach where all existing ER model constructs are given a temporal semantics is
attractive. The database designers are likely to be familiar with the existing ER
constructs. So, upon understanding the principle at work when making these con-
structs temporal, the designers are ready to work with, and benefit from using, the
temporal ER model. However, this approach is not totally without problems. This
approach rules out the possibility of designing non-temporal databases or databases
where some part of a database is non-temporal and the rest is temporal. Another
problem is that old (legacy) ER diagrams become invalid when introducing the tem-
poral ER model—while their syntax is valid, their semantics have changed, and they
therefore no longer describe the existing relational database schemas.

The models that retain the existing constructs with their old semantics and
introduce new temporal constructs have their problems and advantages. If their
extensions are comprehensive, they are likely to be more difficult for the database
designers to learn and understand. The larger initial investment in training that this
induces may prevent a model from being accepted in industry. On the other hand,
since the semantics of the existing ER constructs are retained with this approach,
the models following this approach avoid the problem of legacy diagrams that, with
their new semantics, no longer describe the existing relational database. This is im-
portant for industrial users with many legacy diagrams. It is also possible to design
non-temporal databases as well as databases where some parts are non-temporal
and others are temporal.

As stated, most of the models rely on another data model as an implementation
model: their schemas are mapped to schemas in these other models, and it is these
other schemas that are subsequently populated and queried. The relational model is
the implementation model of choice. Temporal ER diagrams are either mapped to
relation schemas directly, or they are mapped to regular ER diagrams that are then
mapped to relation schemas. The time-valued attributes that result from mapping
ER diagrams to relation schemas are not interpreted by the relational model, i.e.,
they have no built-in semantics in the relational model. As a result, queries on
time-varying data are often hard to formulate in SQL [31].
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None of the models have one of the many time-extended relational models
proposed [29] as their implementation model. The temporal relational models have
data-definition and query-language capabilities that better support the management
of temporal data and would thus constitute natural candidate implementation plat-
forms.

4.2 Research Directions

A number of topics are the subjects of ongoing research or are candidates for future
research.

First, the set of criteria is not necessarily complete, and it may be feasible
to include additional criteria for evaluating and comparing temporal ER models.
This indicates that a taxonomy of evaluation criteria that charts the design space of
temporal extensions and thus may be used for indicating areas with missing criteria
would be very desirable. With such a taxonomy, it becomes possible to ensure that
we evaluate all important properties of temporally extended ER models.

Second, most of the criteria may be applied to extensions of the ER model
other than temporal ones. In this paper we have described the criteria in the spe-
cific context of temporal extensions for concreteness. It is an interesting next step
to explore the application of the criteria to other types of ER extensions, such as
spatial [15], spatio-temporal, multi-media, or security ER models. Another promis-
ing direction deserving attention is the application of the criteria to extensions of
modeling notations other than the ER model.

Third, the systematic use of the criteria for the design of a temporally extended
ER model is a very relevant research direction. We recommend that designers of fu-
ture temporally extended ER models consciously consider their ER extension with
respect to each criterion. The ideal temporal ER model is easy to understand in
terms of the ER model; does not invalidate legacy diagrams and database applica-
tions; and does not restrict database to be temporal, but rather permits the designer
to mix temporal and non-temporal parts.

Fourth, since most DBMSs used in industry are relational, temporal ER mod-
els should ideally include mappings to several implementation platforms: the re-
lational model (in the various dialects of the different DBMS products), temporal
relational models, and emerging models (e.g., SQL3). It is a challenge of high prac-
tical relevance to design mappings that maximally exploit these and other candidate
implementation platforms.

Fifth, we believe that it would be of interest to design a “standard” textual rep-
resentation of different types of ER diagrams. This representation could serve a as
a middle form: ER-model designers could provide mappings to this representation,
while others could independently provide mappings to the various implementation
platforms in use.
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