
On-the-Fly Exact Computation
of Bisimilarity Distances?

Giorgio Bacci1,2, Giovanni Bacci2, Kim G. Larsen2, and Radu Mardare2

1 Dept. of Mathematics and Computer Science, University of Udine, Italy
giorgio.bacci@uniud.it

2 Department of Computer Science, Aalborg University, Denmark
{grbacci,giovbacci,kgl,mardare}@cs.aau.dk

Abstract. This paper proposes an algorithm for exact computation of
bisimilarity distances between discrete-time Markov chains introduced
by Desharnais et. al. Our work is inspired by the theoretical results pre-
sented by Chen et. al. at FoSSaCS’12, proving that these distances can
be computed in polynomial time using the ellipsoid method. Despite
its theoretical importance, the ellipsoid method is known to be inef-
ficient in practice. To overcome this problem, we propose an efficient
on-the-fly algorithm which, unlike other existing solutions, computes ex-
actly the distances between given states and avoids the exhaustive state
space exploration. It is parametric in a given set of states for which we
want to compute the distances. Our technique successively refines over-
approximations of the target distances using a greedy strategy which
ensures that the state space is further explored only when the current
approximations are improved. Tests performed on a consistent set of
(pseudo)randomly generated Markov chains shows that our algorithm
improves, on average, the efficiency of the corresponding iterative algo-
rithms with orders of magnitude.

1 Introduction

Probabilistic bisimulation for Markov chains (MCs), introduced by Larsen and
Skou [12], is the key concept for reasoning about the equivalence of probabilistic
systems. However, when one focuses on quantitative behaviours it becomes obvi-
ous that such an equivalence is too “exact” for many purposes as it only relates
processes with identical behaviours. In various applications, such as systems bi-
ology [15], games [3], planning [6] or security [2], we are interested in knowing
whether two processes that may differ by a small amount in the real-valued pa-
rameters (probabilities) have “sufficiently” similar behaviours. This motivated
the development of the metric theory for MCs, initiated by Desharnais et al. [8]
and greatly developed and explored by van Breugel, Worrell and others [17,16]. It
consists in proposing a bisimilarity distance (pseudometric), which measures the

? Work supported by Sapere Aude: DFF-Young Researchers Grant 10-085054 of the
Danish Council for Independent Research, by the VKR Center of Excellence MT-
LAB and by the Sino-Danish Basic Research Center IDEA4CPS.

2 G. Bacci, G. Bacci, K. Larsen, R. Mardare

behavioural similarity of two MCs. The pseudometric proposed by Desharnais
et al. is parametric in a discount factor λ ∈ (0, 1] that controls the significance
of the future in the measurement.

Since van Breugel et. al. have presented a fixed point characterization of
the aforementioned pseudometric in [16], several iterative algorithms have been
developed in order to compute its approximation up to any degree of accu-
racy [9,17,16]. Recently, Chen et. al. [4] proved that, for finite MCs with rational
transition function, the bisimilarity pseudometrics can be computed exactly in
polynomial time. The proof consists in describing the pseudometric as the solu-
tion of a linear program that can be solved using the ellipsoid method. Although
the ellipsoid method is theoretically efficient, “computational experiments with
the method are very discouraging and it is in practice by no means a competitor of
the, theoretically inefficient, simplex method”, as stated in [14]. Unfortunately,
in this case the simplex method cannot be used to speed up performances in
practice, since the linear program to be solved may have an exponential number
of constraints in the number of states of the MC.

In this paper, we propose an alternative approach to this problem, which
allows us to compute the pseudometric exactly and efficiently in practice. This
is inspired by the characterization of the undiscounted pseudometric using cou-
plings, given in [4], which we extend to generic discount factors. A coupling for
a pair of states of a given MC is a function that describes a possible redistri-
bution of the transition probabilities of the two states; it is evaluated by the
discrepancy function that measures the behavioural disimilarities between the
two states. In [4] it is shown that the bisimilarity pseudometric for a given MC
is the minimum among the discrepancy functions corresponding to all the cou-
plings that can be defined for that MC; moreover, the bisimilarity pseudometric
is itself a discrepancy function corresponding to an optimal coupling. This sug-
gests that the problem of computing the pseudometric can be reduced to the
problem of finding a coupling with the least discrepancy function.

Our approach aims at finding an optimal coupling using a greedy strategy
that starts from an arbitrary coupling and repeatedly looks for new couplings
that improve the discrepancy function. This strategy will eventually find an
optimal coupling. We use it to support the design of an on-the-fly algorithm
for computing the exact behavioural pseudometric that can be either applied
to compute all the distances in the model or to compute only some designated
distances. The advantage of using an on-the-fly approach consists in the fact that
we do not need to exhaustively explore the state space nor to construct entire
couplings but only those fragments that are needed in the local computation.

The efficiency of our algorithm has been evaluated on a significant set of
randomly generated MCs. The results show that our algorithm performs orders
of magnitude better than the corresponding iterative algorithms proposed, for
instance in [9,4]. Moreover, we provide empirical evidence for the fact that our
algorithm enjoys good execution running times.

One of the main practical advantages of our approach consists in the fact
that it can focus on computing only the distances between states that are of

On-the-Fly Exact Computation of Bisimilarity Distances 3

particular interest. This is useful in practice, for instance when large systems are
considered and visiting the entire state space is expensive. A similar issue has
been considered by Comanici et. al., in [5], who have noticed that for computing
the approximated pseudometric one does not need to update the current value
for all the pairs at each iteration, but it is sufficient to only focus on the pairs
where changes are happening rapidly. Our approach goes much beyond this idea.
Firstly, we are not only looking at approximations of the bisimilarity distance,
but we develop an exact algorithm; secondly, we provide a termination condition
that can be checked locally, still ensuring that the local optimum corresponds to
the global one. In addition, our method can be applied to decide whether two
states of an MC are probabilistic bisimilar, to identify the bisimilarity classes for
a given MC or to solve lumpability problems. Our approach can also be used with
approximation techniques as, for instance, to provide a least over-approximation
of the behavioural distance given over-estimates of some particular distances.
This can be further integrated with other approximate algorithms having the
advantage of the on-the-fly state space exploration.

Synopsis: The paper is organized as follows. In Section 2, we recall the basic
preliminaries on Markov chains and define the bisimilarity pseudometric, for
which we provide an alternative characterization in Section 3. Section 4 collects
all theoretical results which are the basis for the development of the on-the-fly
algorithm, presented in Section 5, for the exact computation of the pseudometric.
The efficiency of our algorithm is supported by experimental results, shown in
Section 6. Final remarks and conclusions are in Section 7.

2 Markov Chains and Bisimilarity Pseudometrics

In this section we give the definitions of (discrete-time) Markov chains (MCs)
and probabilistic bisimilarity for MCs [12]. Then we recall the bisimilarity pseu-
dometric of Desharnais et. al. [8], but rather than giving its first logical definition,
we present its fixed point characterization given by van Breugel et. al. [16].

Definition 1 (Markov chain). A (discrete-time) Markov chain is a tupleM =
(S,A, π, `) consisting of a countable nonempty set S of states, a nonempty set
A of labels, a transition probability function π : S × S → [0, 1] such that, for
arbitrary s ∈ S,

∑
t∈S π(s, t) = 1, and a labelling function ` : S → A. M is

finite if its support set S is finite.

Given a finite MC M = (S,A, π, `), we identify the transition probability
function π with its transition matrix (π(s, t))s,t∈S . For s, t ∈ S, we denote by
π(s, ·) and π(·, t), respectively, the probability distribution of exiting from s to
any state and the sub-probability distribution of entering to t from any state.

The MCM induces an underlying (directed) graph, denoted by G(M), where
the states act as vertices and (s, t) is an edge in G(M), if and only if, π(s, t) > 0.
For a subset Q ⊆ S, we denote by RM(Q) the set of states reachable from some
s ∈ Q, and by RM(s) we denote RM({s}).

4 G. Bacci, G. Bacci, K. Larsen, R. Mardare

From a theoretical point of view, it is irrelevant whether the transition prob-
ability function of a given Markov Chain has rational values or not. However,
for algorithmic purposes, in this paper we assume that for arbitrary s, t ∈ S,
π(s, t) ∈ Q ∩ [0, 1]. For computational reasons, in the rest of the paper we re-
strict our investigation to finite Markov chains.

Definition 2 (Probabilistic Bisimulation). Let M = (S,A, π, `) be an MC.
An equivalence relation R ⊆ S × S is a probabilistic bisimulation if whenever
s R t, then

(i) `(s) = `(t) and,
(ii) for each R-equivalence class E,

∑
u∈E π(s, u) =

∑
u∈E π(t, u).

Two states s, t ∈ S are bisimilar, written s ∼ t, if they are related by some
probabilistic bisimulation.

This definition is due to Larsen and Skou [12]. Intuitively, two states are bisimilar
if they have the same label and their probability of moving by a single transition
to any given equivalence class is always the same.

The notion of equivalence can be relaxed by means of a pseudometric, which
tells us how far apart from each other two elements are and whenever they are at
zero distance they are equivalent. The bisimilarity pseudometric of Desharnais
et. al. [8] on MCs enjoys the property that two states are at zero distance if and
only if they are bisimilar. This pseudometric can be defined as the least fixed
point of an operator based on the Kantorovich metric for comparing probability
distributions, which makes use of the notion of matching.

Definition 3 (Matching). Let µ, ν : S → [0, 1] be probability distributions on
S. A matching for the pair (µ, ν) is a probability distribution ω : S × S → [0, 1]
on S × S satisfying

∀u ∈ S.
∑
s∈S ω(u, s) = µ(u) , ∀ v ∈ S.

∑
s∈S ω(s, v) = ν(v) . (1)

We call µ and ν, respectively, the left and the right marginals of ω.

In the following, we denote by µ⊗ ν the set of all matchings for (µ, ν).

Remark 4. Note that, for S finite, (1) describes the constraints of a homoge-
neous transportation problem (TP) [7,10], where the vector (µ(u))u∈S specifies
the amounts to be shipped and (ν(v))v∈S the amounts to be received. Thus, a
matching ω for (µ, ν) induces a matrix (ω(u, v))u,v∈S to be thought as a shipping
schedule belonging to the transportation polytope µ ⊗ ν. Hereafter, we denote
by TP (c, ν, µ) the TP with cost matrix (c(u, v))u,v∈S and marginals ν and µ. �

For M = (S,A, π, `) an MC, and λ ∈ (0, 1] a discount factor, the operator
∆Mλ : [0, 1]S×S → [0, 1]S×S , for d : S × S → [0, 1] and s, t ∈ S, is defined by:

∆Mλ (d)(s, t) =

1 if `(s) 6= `(t)

λ · min
ω∈π(s,·)⊗π(t,·)

∑
u,v∈S

d(u, v) · ω(u, v) if `(s) = `(t)

On-the-Fly Exact Computation of Bisimilarity Distances 5

In the above definition, π(s, ·)⊗π(t, ·) is a closed polytope so that the minimum
is well defined and it corresponds to the optimal value of TP (d, π(s, ·), π(t, ·)).

The set [0, 1]S×S is endowed with the partial order v defined as d v d′

iff d(s, t) ≤ d′(s, t) for all s, t ∈ S. This forms a complete lattice with bottom
element 0 and top element 1, defined as 0(s, t) = 0 and 1(s, t) = 1, for all s, t ∈ S.
For D ⊆ [0, 1]S×S , the least upper bound

⊔
D, and greatest lower bound

d
D

are given by (
⊔
D)(s, t) = supd∈D d(s, t) and (

d
D)(s, t) = infd∈D d(s, t) for all

s, t ∈ S.
In [16], for any M and λ ∈ [0, 1], ∆Mλ is proved to be monotonic, thus, by

Tarski’s fixed point theorem, it admits least and greatest fixed points.

Definition 5 (Bisimilarity pseudometric). Let M be an MC and λ ∈ (0, 1]
be a discount factor, then the λ-discounted bisimilarity pseudometric for M,
written δMλ , is the least fixed point of ∆Mλ .

Hereafter, ∆Mλ and δMλ will be denoted simply by ∆λ and δλ, respectively,
when the Markov chain M is clear from the context.

3 Alternative Characterization of the Pseudometric

In [4], Chen et. al. proposed an alternative characterization of δ1, relating the
pseudometric to the notion of coupling. In this section, we recall the definition
of coupling, and generalize the characterization for generic discount factors.

Definition 6 (Coupling). Let M = (S,A, π, `) be a finite MC. The Markov
chain C = (S × S,A×A,ω, l) is said a coupling for M if, for all s, t ∈ S,

1. ω((s, t), ·) ∈ π(s, ·)⊗ π(t, ·), and
2. l(s, t) = (`(s), `(t)).

A coupling for M can be seen as a probabilistic pairing of two copies of M
running synchronously, although not necessarily independently. Couplings have
been used to characterize weak ergodicity of arbitrary Markov chains [11], or to
give upper bounds on convergence to stationary distributions [1,13].

Given a coupling C = (S × S,A × A,ω, l) for M = (S,A, π, `) we define
Γ Cλ : [0, 1]S×S → [0, 1]S×S for d : S × S → [0, 1] and s, t ∈ S, as follows:

Γ Cλ (d)(s, t) =

1 if `(s) 6= `(t)

λ ·
∑
u,v∈S

d(u, v) · ω((s, t), (u, v)) if `(s) = `(t)

One can easily verify that, for any λ ∈ (0, 1], Γ Cλ is well-defined, moreover it is
order preserving. By Tarski’s fixed point theorem, Γ Cλ admits a least fixed point,
which we denote by γCλ . In Section 4.1 we will see that, for any s, t ∈ S, γC1 (s, t)
corresponds to the probability of reaching a state (u, v) with `(u) 6= `(v) starting
from the state (s, t) in the underling graph of C. For this reason we will call γCλ
the λ-discounted discrepancy of C or simply the λ-discrepancy of C.

6 G. Bacci, G. Bacci, K. Larsen, R. Mardare

Lemma 7. LetM be an MC, C be a coupling forM, and λ ∈ (0, 1] be a discount
factor. If d = Γ Cλ (d) then δλ v d.

As a consequence of Lemma 7 we obtain the following characterization for
δλ, which generalizes [4, Theorem 8] for generic discount factors.

Theorem 8 (Minimum coupling criterion). LetM be an MC and λ ∈ (0, 1]
be a discount factor. Then, δλ = min

{
γCλ | C coupling for M

}
.

Proof. For any fixed d ∈ [0, 1]S×S there exists a coupling C for M such that
Γ Cλ (d) = ∆λ(d). Indeed we can take as transition function for C, the joint prob-
ability distribution ω such that, for all s, t ∈ S,

∑
u,v∈S d(u, v) · ω((s, t), (u, v))

achieves the minimum value.
Let D be a coupling for M such that ΓDλ (δλ) = ∆λ(δλ). By Definition 5,

∆λ(δλ) = δλ, therefore δλ is a fixed point for ΓDλ . By Lemma 7, δλ is a lower
bound of the set of fixed points of ΓDλ , therefore δλ = γDλ . By Lemma 7, we
have also that, for any coupling C of M, δλ v γCλ . Therefore, given the set
D =

{
γCλ | C coupling for M

}
, it follows that δλ ∈ D and δλ is a lower bound

for D. Hence, by antisymmetry of v, δλ = minD. ut

4 Exact Computation of Bisimilarity Distance

Inspired by the characterization given in Theorem 8, in this section we propose
a procedure to exactly compute the bisimilarity pseudometric.

For λ ∈ (0, 1], the set of couplings for M can be endowed with the preorder
Eλ defined as C Eλ D, if and only if, γCλ v γDλ . Theorem 8 suggests to look at all
the couplings C for M in order to find an optimal one, i.e., minimal w.r.t. Eλ.
However, it is clear that the enumeration of all the couplings is unfeasible, there-
fore it is crucial to provide an efficient search strategy which prevents us to do
that. Moreover we also need an efficient method for computing the λ-discrepancy.

In Subsection 4.1 the problem of computing the λ-discrepancy of a coupling
C is reduced to the problem of computing reachability probabilities in C. Then,
Subsection 4.2 illustrates a greedy strategy that explores the set of couplings
until an optimal one is eventually reached.

4.1 Computing the λ-Discrepancy

In this section, we first recall the problem of computing the reachability proba-
bility for general MCs [1], then we instantiate it to compute the λ-discrepancy.

Let M = (S,A, π, `) be an MC, and xs denote the probability of reaching
G ⊆ S from s ∈ S. The goal is to compute xs for all s ∈ S. The following holds

xs = 1 if s ∈ G , xs =
∑
t∈S xt · π(s, t) if s ∈ S \G , (2)

that is, either G is already reached, or it can be reached by way of another state.
Equation (2) defines a linear equation system of the form x = Ax + b, where
S? = S \G, x = (xs)s∈S?

, A = (π(s, t))s,t∈S?
, and b = (

∑
t∈G π(s, t))s∈S?

.

On-the-Fly Exact Computation of Bisimilarity Distances 7

This linear equation system always admits a solution in [0, 1]S , however, it
may not be unique. Since we are interested in the least solution, we address this
problem by fixing each free variable to zero, so that we obtain a reduced system
with a unique solution. This can be easily done by inspecting the graph G(M):
all variables with zero probability of reaching G are detected by checking that
they cannot be reached from any state in G in the reverse graph of G(M).

Regarding the λ-discrepancy for a coupling C, if λ = 1, one can directly
instantiate the aforementioned method with G = {(s, t) ∈ S × S | `(s) 6= `(t)}
and S? = (S × S) \ G. As for generic λ ∈ (0, 1], the discrepancy γCλ can be
formulated as the least solution in [0, 1]S×S of the linear equation system

x = λAx+ λb . (3)

Remark 9. If one is interested in computing the λ-discrepancy for a particular
pair of states (s, t), the method above can be applied on the least independent
subsystem of Equation (3) containing the variable x(s,t). Moreover, assuming
that for some pairs the λ-discrepancy is already known, the goal set can be
extended with all those pairs with λ-discrepancy greater than zero. �

4.2 Greedy Search Strategy for Computing an Optimal Coupling

In this section, we give a greedy strategy for moving toward an optimal coupling
starting from a given one. Then we provide sufficient and necessary conditions
for a coupling, ensuring that its associated λ-discrepancy coincides with δλ.

Hereafter, we fix a coupling C = (S×S,A×A,ω, l) forM = (S,A, π, `). Let
s, t ∈ S and µ be a matching for (π(s, ·), π(t, ·)). We denote by C[(s, t)/µ] the
coupling for M with the same labeling function of C and transition function ω′

defined by ω′((u, v), ·) = ω((u, v), ·), for all (u, v) 6= (s, t), and ω′((s, t), ·) = µ.

Lemma 10. Let C be a coupling for M, s, t ∈ S, ω′ ∈ π(s, ·) ⊗ π(t, ·), and
D = C[(s, t)/ω′]. If ΓDλ (γCλ)(s, t) < γCλ(s, t), then γDλ < γCλ .

Lemma 10 states that C can be improved w.r.t. Eλ by updating its transition
function at (s, t), if `(s) = `(t) and there exists ω′ ∈ π(s, ·)⊗ π(t, ·) such that∑

u,v∈S γ
C
λ(u, v) · ω′(u, v) <

∑
u,v∈S γ

C
λ(u, v) · ω((s, t), (u, v)).

Notice that, an optimal schedule ω′ for TP (γCλ , π(s, ·), π(t, ·)) enjoys the above
condition, so that, the update C[(s, t)/ω′] improves C. This gives us a strategy
for moving toward δλ by successive improvements on the couplings.

Now we proceed giving a sufficient and necessary condition for termination.

Lemma 11. For any λ ∈ (0, 1], if γCλ 6= δλ, then there exist s, t ∈ S and a
coupling D = C[(s, t)/ω′] for M such that ΓDλ (γCλ)(s, t) < γCλ(s, t).

The above result ensures that, unless C is optimal w.r.t Eλ, the hypothesis of
Lemma 10 are satisfied, so that, we can further improve C as aforesaid.

The next statement proves that this search strategy is correct.

8 G. Bacci, G. Bacci, K. Larsen, R. Mardare

Theorem 12. δλ = γCλ iff there is no coupling D forM such that ΓDλ (γCλ) < γCλ .

Proof. We prove: δλ 6= γCλ iff there exists D such that ΓDλ (γCλ) < γCλ . (⇒) Assume
δλ 6= γCλ . By Lemma 11, there are s, t ∈ S and ω′ ∈ π(s, ·) ⊗ π(t, ·) such that
λ·
∑
u,v∈S γ

C
λ(u, v)·ω′(u, v) < γCλ(s, t). As in the proof of Lemma 10, we have that

D = C[(s, t)/ω′] satisflies ΓD(γCλ) < γCλ . (⇐) Let D be such that ΓDλ (γCλ) < γCλ .
By Tarski’s fixed point theorem γDλ < γCλ . By Theorem 8, δλ v γDλ < γCλ . ut

Remark 13. Note that, in general there could be an infinite number of couplings
for a given MC. However, for each fixed d ∈ [0, 1]S×S , the linear function map-
ping ω((s, t), ·) to λ

∑
u,v∈S d(u, v) ·ω((s, t), (u, v)) achieves its minimum at some

vertex in the transportation polytope π(s, ·)⊗ π(t, ·). Since the number of such
vertices are finite, using the optimal TP schedule for the update, ensures that
the search strategy is always terminating. �

5 The On-the-Fly Algorithm

In this section we provide an on-the-fly algorithm for exact computation of the
bisimilarity distance δλ for generic discount factors making full use of the greedy
strategy presented in Section 4.2.

Let Q ⊆ S × S. Assume we want to compute δλ(s, t), for all (s, t) ∈ Q. The
method proposed in Section 4.2 has the following key features:

1. the improvement of each coupling C is obtained by a local update of its
transition function at some state (u, v) in C;

2. the strategy does not depend on the choice of the state (u, v);
3. whenever a coupling C is considered, the over-approximation γCλ of the dis-

tance can be computed by solving a system of linear equations.

Among them, only the last one requires a visit of the coupling. However, as
noticed in Remark 9, the value γCλ(s, t) can be computed without considering the
entire linear system of Equation (3), but only its smallest independent subsystem
containing the variable x(s,t), which is obtained by restricting on the variables
x(u,v) such that (u, v) ∈ RC((s, t)). This subsystem can be further reduced, by
Gaussian elimination, when some values for δλ are known. The last observation
suggests that, in order to compute γCλ(s, t), we do not need to store the entire
coupling, but it can be constructed on-the-fly.

The exact computation of the bisimilarity pseudometric is implemented by
Algorithm 1. It takes as input a finite MC M = (S,A, π, `), a discount factor
λ, and a query set Q. We assume the following global variables to store: C, the
current partial coupling; d, the λ-discrepancy associated with C; ToCompute, the
pairs of states for which the distance has to be computed; Exact, the pairs of
states (s, t) such that d(s, t) = δλ(s, t); V isited, the states of C considered so far.
At the beginning (line 1) both the coupling C and the discrepancy d are empty,
there are no visited states, and no exact computed distances. While there are
still pairs left to be computed (line 2), we pick one (line 3), say (s, t). According
to the definition of δλ, if `(s) 6= `(t) then δλ(s, t) = 1; if s = t then δλ(s, t) = 0, so

On-the-Fly Exact Computation of Bisimilarity Distances 9

Algorithm 1 On-the-Fly Bisimilarity Pseudometric

Input: MC M = (S,A, π, `); discount factor λ ∈ (0, 1]; query Q ⊆ S × S.
1. C ← empty; d← empty; V isited← ∅; Exact← ∅; ToCompute← Q; // Init.
2. while ToCompute 6= ∅ do
3. pick (s, t) ∈ ToCompute
4. if `(s) 6= `(t) then
5. d(s, t)← 1; Exact← Exact ∪ {(s, t)}; V isited← V isited ∪ {(s, t)}
6. else if s = t then
7. d(s, t)← 0; Exact← Exact ∪ {(s, t)}; V isited← V isited ∪ {(s, t)}
8. else // if (s, t) is nontrivial
9. if (s, t) /∈ V isited then pick ω ∈ π(s, ·)⊗ π(t, ·); SetPair(M, (s, t), ω)

10. Discrepancy(λ, (s, t)) // update d as the λ-discrepancy for C
11. while ∃(u, v) ∈ RC((s, t)). C[(u, v)] not opt. for TP(d, π(u, ·), π(v, ·)) do
12. ω ← optimal schedule for TP(d, π(u, ·), π(v, ·))
13. SetPair(M, (u, v), ω) // improve the current coupling
14. Discrepancy(λ, (s, t)) // update d as the λ-discrepancy for C
15. end while
16. Exact← Exact ∪RC((s, t)) // add new exact distances
17. remove from C all edges exiting from nodes in Exact
18. end if
19. ToCompute← ToCompute \ Exact // remove exactly computed pairs
20. end while
21. return d�Q // return the distance for all pairs in Q

that, d(s, t) is set accordingly, and (s, t) is added to Exact (lines 4–7). Otherwise,
if (s, t) was not previously visited, a matching ω ∈ π(s, ·) ⊗ π(t, ·) is guessed,
and the routine SetPair updates the coupling C at (s, t) with ω (line 9), then
the routine Discrepancy updates d with the λ-discrepancy associated with C
(line 10). According to the greedy strategy, C is successively improved and d
is consequently updated, until no further improvements are possible (lines 11–
15). Each improvement is demanded by the existence of a better schedule for
TP (d, π(u, ·), π(u, ·)) (line 11). Note that, each improvement actually affects the
current value of d(s, t). This is done by restricting our attention only to the pairs
that are reachable from (s, t) in G(C). It is worth to note that C is constantly
updated, hence RC((s, t)) may differ from one iteration to another. When line 16
is reached, for each (u, v) ∈ RC((s, t)), we are guaranteed that d(u, v) = δλ(s, t),
therefore RC((s, t)) is added to Exact, and these values can be used in successive
computations, so the edges exiting from these states are removed from G(C). In
line 19, the exact pairs computed so far are removed from ToCompute. Finally, if
no more pairs need be considered, the exact distance on Q is returned (line 21).

Algorithm 1 calls the subroutines SetPair and Discrepancy , respectively, to
construct/update the coupling C, and to update the current over-approximation
d during the computation. Now we explain how they work.

SetPair (Algorithm 2) takes as input an MCM = (S,A, π, `), a pair of states
(s, t), and a matching ω ∈ π(s, ·) ⊗ π(t, ·). In lines 1–2 the transition function
of the coupling C is set to ω at (s, t), then (s, t) is added to V isited. The on-

10 G. Bacci, G. Bacci, K. Larsen, R. Mardare

Algorithm 2 SetPair(M, (s, t), ω)

Input: MC M = (S,A, π, `); s, t ∈ S; ω ∈ π(s, ·)⊗ π(t, ·)
1. C[(s, t)]← ω // update the coupling at (s, t) with ω
2. V isited← V isited ∪ {(s, t)} // set (s, t) as visited
3. for all (u, v) ∈ {(u′, v′) | ω(u′, v′) > 0} \ V isited do // for all demanded pairs
4. V isited← V isited ∪ {(u, v)}
5. if u = v then d(u, v)← 0; Exact← Exact ∪ {(u, v)};
6. if `(u) 6= `(v) then d(u, v)← 1; Exact← Exact ∪ {(u, v)};
7. // propagate the construction
8. if (u, v) /∈ Exact then
9. pick ω′ ∈ π(u, ·)⊗ π(v, ·) // guess a matching

10. SetPair(M, (u, v), ω′)
11. end if
12. end for

Algorithm 3 Discrepancy(λ, (s, t))

Input: discount factor λ ∈ (0, 1]; s, t ∈ S
1. Nonzero← ∅ // detect non-zero variables
2. for all (u, v) ∈ RC((s, t)) ∩ Exact such that d(u, v) > 0 do
3. Nonzero← Nonzero ∪

{
(u′, v′) | (u, v) ; (u′, v′) in G−1(C)

}
4. end for
5. for all (u, v) ∈ RC((s, t)) \Nonzero do // set distance to zero
6. d(u, v)← 0; Exact← Exact ∪ {(u, v)}
7. end for
8. // construct the reduced linear system over nonzero variables
9. A← (C[(u, v)](u′, v′))(u,v),(u′,v′)∈Nonzero

10. b←
(∑

(u′,v′)∈Exact d(u′, v′) · C[(u, v)](u′, v′)
)
(u,v)∈Nonzero

11. x̃← solve x = λAx + λb′ // solve the reduced linear system
12. for all (u, v) ∈ Nonzero do // update distances
13. d(u, v)← x̃(u,v)
14. end for

the-fly construction of the coupling is recursively propagated to the successors
of (s, t) in G(C). During this construction, if some states with trivial distances
are encountered, d and Exact are updated accordingly (lines 5–6).

Discrepancy (Algorithm 3) takes as input a discount factor λ and a pair
of states (s, t). It constructs the smallest (reduced) independent subsystem of
Equation 3 having the variable x(s,t) (lines 9–10). As noticed in Remark 9, the
least solution is computed by fixing d to zero for all the pairs which cannot be
reached from any pair in Exact and such that its distance is greater than zero
(lines 5–7). Then, the discrepancy is computed and d is consequently updated.

Next, we present a simple example of Algorithm 1, showing the main features
of our method: (1) the on-the-fly construction of the (partial) coupling, and (2)
the restriction only to those variables which are demanded for the solution of
the system of linear equations.

On-the-Fly Exact Computation of Bisimilarity Distances 11

1

2

6 4

3

7

5

1
6

1
6

1
3

1
3

1
5

2
5

2
5

1
2

1
2

1
3

1
3

1
3

2
5

2
5

1
5

1
51

2

1
10

1
5

1
5

1
3

1
10

1
5

1
6

(1,4) 1 2 3

2 1/3 1/3

3 1/3 1/3

4 1/6 1/6

6 1/6 1/6

1/3 1/3 1/3

(3,4) 1 2 3

2 1/3 1/6 1/2

3 1/6 1/3 1/2

1/3 1/3 1/3

(1,4) 1 2 3

2 1/3 1/3

3 1/3 1/3

4 1/6 1/6

6 1/6 1/6

1/3 1/3 1/3

C0

C1

Fig. 1. Execution trace for the computation of δ1(1, 4) (details in Example 14).

Example 14 (On-the-fly computation). Consider the undiscounted distance be-
tween states 1 and 4 for the {white, gray}-labeled MC depicted in Figure 1.

Algorithm 1 guesses an initial coupling C0 with transition distribution ω0.
This is done considering only the pairs of states which are needed: starting from
(1, 4), the distribution ω0((1, 4), ·) is guessed as in Figure 1, which demands
for the exploration of (3, 4) and a guess ω0((3, 4), ·). Since no other pairs are
demanded, the construction of C0 terminates. This gives the equation system:

x1,4 =
1

3
·

=1︷︸︸︷
x1,2 +

1

3
·

=1︷︸︸︷
x2,3 +

1

6
· x3,4 +

1

6
·

=1︷︸︸︷
x3,6 =

1

6
· x3,4 +

5

6

x3,4 =
1

3
·

=1︷︸︸︷
x1,2 +

1

6
·

=0︷︸︸︷
x2,2 +

1

6
·

=1︷︸︸︷
x2,3 +

1

3
·

=0︷︸︸︷
x3,3 =

1

2
.

Note that the only variables appearing in the above equation system correspond
to the pairs which have been considered so far. The least solution for it is given
by dC0(1, 4) = 11

12 and dC0(3, 4) = 1
2 .

Now, these solutions are taken as the costs of a TP, from which we get an
optimal transportation schedule ω1((1, 4), ·) improving ω0((1, 4), ·). The distri-
bution ω1 is used to update C0 to C1 = C0[(1, 4)/ω1] (depicted in Figure 1),
obtaining the following new equation system:

x1,4 =
1

3
·

=0︷︸︸︷
x2,2 +

1

3
·

=0︷︸︸︷
x3,3 +

1

6
· x1,4 +

1

6
·

=1︷︸︸︷
x1,6 =

1

6
· x1,4 +

1

6
,

which has dC1(1, 4) = 1
5 as least solution. Note that, (3, 4) is no more demanded,

thus we do not need to update it. Running again the TP on the improved over-
approximation dC1 , we discover that the coupling C1 cannot be further improved,
hence we stop the computation, returning δ1(1, 4) = dC1(1, 4) = 1

5 .
It is worth noticing that Algorithm 1 does not explore the entire MC, not

even all the reachable states from 1 and 4. The only edges in the MC which have
been considered during the computation are highlighted in Figure 1. �

12 G. Bacci, G. Bacci, K. Larsen, R. Mardare

States
On-the-Fly (exact) Iterating (approximated) Approximation

Time (s) # TPs Time (s) # Iterations # TPs Error

5 0.019675 1.19167 0.0389417 1.73333 26.7333 0.139107
6 0.05954 3.04667 0.09272 1.82667 38.1333 0.145729
7 0.13805 6.01111 0.204789 2.19444 61.7278 0.122683
8 0.255067 8.5619 0.364019 2.30476 83.0286 0.11708
9 0.499983 12.0417 0.673275 2.57917 114.729 0.111104
10 1.00313 18.7333 1.27294 3.11111 174.363 0.0946047
11 2.15989 25.9733 2.66169 3.55667 239.557 0.0959714
12 4.64225 34.797 5.52232 4.04242 318.606 0.0865612
13 6.73513 39.9582 8.06186 4.63344 421.675 0.0977743
14 6.33637 38.0048 7.18807 4.91429 593.981 0.118971
17 11.2615 47.0143 12.8048 5.88571 908.61 0.13213
19 26.6355 61.1714 29.6542 6.9619 1328.6 0.14013
20 34.379 66.4571 38.2058 7.5381 1597.92 0.142834

Table 1. Comparison between the on-the-fly algorithm and the iterative method.

Remark 15. Notably, Algorithm 1 can also be used for computing over-approxi-
mated distances. Indeed, assuming over-estimates for some particular distances
are already known, they can be taken as inputs and used in our algorithm simply
storing them in the variable d and treated as “exact” values. In this way our
method will return the least over-approximation of the distance agreeing with
the given over-estimates. This modification of the algorithm can be used to
further decrease the exploration of the MC. Moreover, it can be employed in
combination with other existing approximated algorithms, having the advantage
of an on-the-fly state space exploration. �

6 Experimental Results

In this section, we evaluate the performances of the on-the-fly algorithm on a
collection of randomly generated MCs3.

First, we compare the execution times of the on-the-fly algorithm with those
of the iterative method proposed in [4] in the discounted case. Since the iterative
method only allows for the computation of the distance for all state pairs at
once, the comparison is (in fairness) made with respect to runs of our on-the-
fly algorithm with input query being the set of all state pairs. For each input
instance, the comparison involves the following steps:

1. we run the on-the-fly algorithm, storing both execution time and the number
of solved transportation problems,

3 The tests have been made using a prototype implementation coded in Mathematicar

(available at http://people.cs.aau.dk/~mardare/projects/tools/mc_dist.zip)
running on an Intel Core-i7 3.4 GHz processor with 12GB of RAM.

http://people.cs.aau.dk/~mardare/projects/tools/mc_dist.zip

On-the-Fly Exact Computation of Bisimilarity Distances 13

States
out-degree = 3 2 ≤ out-degree ≤ # States∗

Time (s) # TPs Time (s) # TPs

5 0.00594318 0.272727 0.011654 0.657012
6 0.0115532 0.548936 0.0304482 1.66696
7 0.0168408 0.980892 0.0884878 3.67706
8 0.0247971 1.34606 0.164227 5.30112
9 0.0259426 1.29074 0.394543 8.16919
10 0.0583405 2.03887 1.1124 13.0961
11 0.0766988 1.82706 2.22016 18.7228
12 0.0428891 1.62038 4.94045 26.0965
13 0.06082 1.88134 10.3606 35.1738
14 0.0894778 2.79441 20.1233 46.0775
20 0.35631 6.36833 1.5266 13.1367
30 4.66113 17.3167 74.8146 76.2642
50 27.2147 30.8217 2234.54 225.394

Table 2. Average performances of the on-the-fly algorithm on single-pair queries. In
the first to columns the out-degree is 3; in the last two columns, the out-degree varies
from 2 to # States. (*) For 20, 30 and 50 states, out-degree is 4;

2. then, on the same instance, we execute the iterative method until the running
time exceeds that of step 1. We report the execution time, the number of
iterations, and the number of solved transportation problems.

3. Finally, we calculate the approximation error between the exact solution δλ
computed by our method at step 1 and the approximate result d obtained
in step 2 by the iterative method, as maxs,t∈S δλ(s, t)− d(s, t).

This has been made on a collection of MCs varying from 5 to 20 states. For each
n = 5, . . . , 20, we have considered 80 randomly generated MCs per out-degree,
varying from 2 to n. Table 1 reports the average results of the comparison.

As can be seen, our use of a greedy strategy in the construction of the cou-
plings leads to a significant improvement in the performances. We are able to
compute the exact solution before the iterative method can under-approximate
it with an error of ≈ 0.1, which is a considerable error for a value in [0, 1].

So far, we only examined the case when the on-the-fly algorithm is run on
all state pairs at once. Now, we show how the performance of our method is
improved even further when the distance is computed only for single pairs of
states. Table 2 shows the average execution times and number of solved trans-
portation problems for (nontrivial) single-pair queries for randomly generated of
MCs with number of states varying from 5 to 50. In the first two columns we
consider MCs with out-degree equal to 3, while the last two columns show the
average values for out-degrees varying from 2 to the number of states of the MCs.
The results show that, when the out-degree of the MCs is low, our algorithm
performs orders of magnitude better than in the general case. This is illustrated
in Figure 2, where the distributions of the execution times for out-degree 6 and
8 are juxtaposed, in the case of MCs with 14 states. Each bar in the histogram

14 G. Bacci, G. Bacci, K. Larsen, R. Mardare

0 3.5 7 10.5 14 17.5 21 24.5 28 31.5 35 38.5

0

40

80

120

160

200

240

280

Fig. 2. Distribution of the execution times (in seconds) for 1332 tests on randomly
generated MCs with 14 states, out-degree 6 (darkest) and 8 (lightest).

represents the number of tests that terminate within the time interval indicated
in the x-axis.

Notably, our method may perform better on large queries than on single-
pairs queries. This is due to the fact that, although the returned value does not
depend on the order the queried pairs are considered, a different order may speed
up the performances. When the algorithm is run on more than a single pair, the
way they are picked may increase the performances (e.g., compare the execution
times in Tables 1 and 2 for MCs with 14 states).

7 Conclusions and Future Work

In this paper we have proposed an on-the-fly algorithm for computing exactly
the bisimilarity distance between Markov chains, introduced by Desharnais et
al. in [8]. Our algorithm represents an important improvement of the state of
the art in this field where, before our contribution, the known tools were only
concerned with computing approximations of the bisimilarity distances and they
were, in general, based on iterative techniques. We demonstrate that, using on-
the-fly techniques, we cannot only calculate exactly the bisimilarity distance,
but the computation time is improved with orders of magnitude with respect to
the corresponding iterative approaches. Moreover, our technique allows for the
computation on a set of target distances that might be done by only investigating
a significantly reduced set of states, and for further improvement of speed.

Our algorithm can be practically used to address a large spectrum of prob-
lems. For instance, it can be seen as a method to decide whether two states
of a given MC are probabilistic bisimilar, to identify bisimilarity classes, or to
solve lumpability problems. It is sufficiently robust to be used with approxima-
tion techniques as, for instance, to provide a least over-approximation of the
behavioural distance given over-estimates of some particular distances. It can
be integrated with other approximate algorithms, having the advantage of the
efficient on-the-fly state space exploration.

Having a practically efficient tool to compute bisimilarity distances opens the
perspective of new applications already announced in previous research papers.

On-the-Fly Exact Computation of Bisimilarity Distances 15

One of these is the state space reduction problem for MCs. Our technique can be
used in this context as an indicator for the sets of neighbour states that can be
collapsed due to their similarity; it also provides a tool to estimate the difference
between the initial MC and the reduced one, hence a tool for the approximation
theory of Markov chains.

References

1. C. Baier and J. P. Katoen. Principles of Model Checking. MIT Press, 2008. 3, 4.1
2. X. Cai and Y. Gu. Measuring Anonymity. In ISPEC ’09, pages 183–194, Berlin,

Heidelberg, 2009. Springer-Verlag. 1
3. K. Chatterjee, L. de Alfaro, R. Majumdar, and V. Raman. Algorithms for Game

Metrics. Logical Methods in Computer Science, 6(3), 2010. 1
4. D. Chen, F. van Breugel, and J. Worrell. On the Complexity of Computing Proba-

bilistic Bisimilarity. In L. Birkedal, editor, FoSSaCS, volume 7213 of Lecture Notes
in Computer Science, pages 437–451. Springer, 2012. 1, 3, 3, 6, A

5. G. Comanici, P. Panangaden, and D. Precup. On-the-Fly Algorithms for Bisim-
ulation Metrics. International Conference on Quantitative Evaluation of Systems,
0:94–103, 2012. 1

6. G. Comanici and D. Precup. Basis function discovery using spectral clustering and
bisimulation metrics. In AAMAS ’11, volume 3, pages 1079–1080, Richland, SC,
2011. International Foundation for Autonomous Agents and Multiagent Systems.
1

7. G. B. Dantzig. Application of the Simplex method to a transportation problem. In
T. Koopmans, editor, Activity analysis of production and allocation, pages 359–373.
J. Wiley, New York, 1951. 4, B

8. J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Metrics for labelled
Markov processes. Theoretical Compututer Science, 318(3):323–354, 2004. 1, 2, 2,
7

9. N. Ferns, P. Panangaden, and D. Precup. Metrics for finite Markov Decision
Processes. In Proceedings of the 20th conference on Uncertainty in Artificial Intel-
ligence, UAI, pages 162–169. AUAI Press, 2004. 1

10. L. R. Ford and D. R. Fulkerson. Solving the Transportation Problem. Management
Science, 3(1):24–32, 1956. 4, B

11. D. Griffeath. A maximal coupling for markov chains. Probability Theory and
Related Fields, 31:95–106, 1975. 3

12. K. G. Larsen and A. Skou. Bisimulation through probabilistic testing. Information
and Computation, 94(1):1–28, 1991. 1, 2, 2

13. M. Mitzenmacher and E. Upfal. Probability and Computing - randomized algo-
rithms and probabilistic analysis. Cambridge University Press, 2005. 3

14. A. Schrijver. Theory of linear and integer programming. John Wiley & Sons, Inc.,
New York, NY, USA, 1986. 1

15. D. Thorsley and E. Klavins. Approximating stochastic biochemical processes with
Wasserstein pseudometrics. IET Systems Biology, 4(3):193–211, 2010. 1

16. F. van Breugel, B. Sharma, and J. Worrell. Approximating a Behavioural Pseudo-
metric without Discount for Probabilistic Systems. Logical Methods in Computer
Science, 4(2):1–23, 2008. 1, 2, 2

17. F. van Breugel and J. Worrell. Approximating and computing behavioural dis-
tances in probabilistic transition systems. Theoretical Computer Science, 360(1-
3):373–385, 2006. 1

16 G. Bacci, G. Bacci, K. Larsen, R. Mardare

A Technical proofs

In this appendix we provide the proofs for all the technical lemmas.

Proof (of Lemma 7). Assume M = (S,A, π, `) and C = (S × S,A × A,ω, l). In
order to prove δλ v d, it suffices to show that ∆λ(d) v d. Indeed, by Tarski’s
fixed point theorem, δλ is a lower bound of {d | ∆λ(d) v d}.

Let s, t ∈ S. If `(s) 6= `(t), then ∆λ(d)(s, t) = 1 = Γ Cλ (d)(s, t) = d(s, t).
If `(s) = `(t), ∆λ(d)(s, t) = λ · minω′∈π(s,·)⊗π(t,·)

∑
u,v∈S d(u, v) · ω′(u, v), and

Γ Cλ (d)(s, t) = λ ·
∑
u,v∈S d(u, v) ·ω((s, t), (u, v)). Since ω((s, t), ·) ∈ π(s, ·)⊗π(t, ·)

(Definition 6), we have that ∆λ(d)(s, t) ≤ Γ Cλ (d)(s, t) = d(s, t). ut

Proof (of Lemma 10). It suffices to show that ΓD(γCλ) < γCλ , i.e., γCλ is a strict
post-fixed point of ΓDλ . Then, the thesis follows by Tarski’s fixed point theorem.

Assume ω̄ be the transition function of D and let u, v ∈ S. If `(u) 6= `(v),
then ΓDλ (γCλ)(u, v) = 1 = Γ Cλ (γCλ)(u, v) = γCλ(u, v). Notice that, this also means
that `(s) = `(t), since ΓDλ (γCλ)(s, t) < γCλ(s, t), by hypothesis. If `(u) = `(v) and
(u, v) 6= (s, t), by definition of D, we have that ω̄((u, v), ·) = ω((u, v), ·), hence
Γ Cλ (γCλ)(u, v) = ΓDλ (γCλ)(u, v). This proves ΓD(γCλ) < γCλ . ut

Lemma 16. Let s, t ∈ S, and γC1 = ∆1(γCλ). γC1 (s, t) = 1 iff δ1(s, t) = 1.

Proof. (⇐) Follows by Theorem 8. (⇒) Assume ω be the transition function of
C. If `(s) 6= `(t) the thesis follows trivially. Assume `(s) = `(t).

1 = γC1 (s, t) = Γ C1 (γC1)(s, t)

=
∑
u,v∈S γ

C
1 (u, v) · ω((s, t), (u, v))

≤
∑
u,v∈S ω((s, t), (u, v)) = 1

Thus whenever ω((s, t), (u, v)) > 0, γC1 (u, v) = 1. By hypothesis, γC1 = ∆1(γCλ),
therefore 1 = γC1 (s, t) = minω′∈π(s,·)⊗π(t,·)

∑
u,v∈S γ

C
1 (u, v) ·ω′(u, v). Hence there

is no coupling that can improve the summation. Therefore, by Theorem 8,
δ1(s, t) = 1. ut

Lemma 17. For any λ ∈ (0, 1], if γCλ = ∆λ(γCλ) then δλ = γCλ .

Proof. By Definition 5, it suffices to prove that if γCλ is a fixed point for ∆λ, it
is also the least one. We distinguish two cases: when λ < 1 and λ = 1.

For λ < 1, [4, Theorem 6] states that ∆λ has a unique fixed point. By
hypothesis γCλ is a fixed point for ∆λ, therefore it is also the least one.

For λ = 1, we proceed by contradiction. Assume δ1 6= γC1 and ω be the
transition function of C. By δ1 6= γC1 and Theorem 8, we have that δ1 < γC1 . Let
∆′′ : [0, 1]S×S → [0, 1]S×S defined by

∆′′(d)(s, t) =

{
0 if γC1 (s, t) = 0

∆1(d)(s, t) otherwise

On-the-Fly Exact Computation of Bisimilarity Distances 17

Since ∆1 is monotonic so is ∆′′, thus ∆′′ admits a greatest fixed-point, say g.
By δ1 < γC1 there exists s, t ∈ S such that δ1(s, t) < γC1 (s, t), so that γC1 (s, t) 6= 0.

Suppose that
{

(s, t) | γC1 (s, t) = 0
}

= ∼, by [4, Corollary 18], ∆′′ has a unique
fixed point which corresponds to δ1. By γC1 = ∆1(γC1), we have that γC1 = ∆′′(γC1),
which contradicts the hypothesis that δ1 6= γC1 . It can be shown that there exist
s, t ∈ S such that γC1 (s, t) 6= 0, s ∼ t (as proven above), and g(s, t) = 1. By
Lemma 16 and δ1(s, t) = 0, it holds that γC1 (s, t) < 1, thus γC1 < g. Let m and
M be defined as follows

m = max
{
g(s, t)− γC1 (s, t) | s, t ∈ S

}
, M =

{
(s, t) | g(s, t)− γC1 (s, t) = m

}
.

By γC1 < g, m > 0. We prove first two properties on M :

M ∩ {(s, t) | `(s) 6= `(t)} = ∅ (4)

M ∩
{

(s, t) | γC1 (s, t) = 0
}

= ∅ (5)

(4) follows since, for all `(u) 6= `(v), γC1 (u, v) = 1 = g(u, v), and m > 0. (5)
follows by definition of ∆′′ and m > 0.

Let (s, t) ∈M , then

m = g(s, t)− γC1 (s, t)

= ∆′′(g)(s, t)− Γ C1 (γC1)(s, t)

= ∆1(g)(s, t)− Γ C1 (γC1)(s, t) (by (5))

=
(

min
ω′∈π(s,·)⊗π(t,·)

∑
u,v∈S

g(u, v) · ω′(u, v)
)
−
∑
u,v∈S

γC1 (u, v) · ω((s, t), (u, v))

≤
∑
u,v∈S

g(u, v) · ω((s, t), (u, v))−
∑
u,v∈S

γC1 (u, v) · ω((s, t), (u, v))

=
∑
u,v∈S

(
g(u, v)− γC1 (u, v)

)
· ω((s, t), (u, v)) .

Since, for all u, v ∈ S, g(u, v) − γC1 (u, v) ≤ m and
∑
u,v∈S ω((s, t), (u, v)) = 1,

we have that, whenever ω((s, t), (u, v)) > 0, g(u, v)− γC1 (u, v) = m. Thus ω has
support contained in M . This means that, for all (s, t) ∈ M , RC((s, t)) ⊆ M .
Thus, by (4), we have that γC1 (s, t) = 0, but this contradicts (5). ut

Proof (of Lemma 11). We proceed by contraposition. Suppose that for all s, t ∈ S
and for all couplings D = C[(s, t)/ω′], ΓDλ (γCλ)(s, t) ≥ γCλ(s, t). This corresponds
to say that γCλ = ∆λ(γCλ). Then the thesis follows from Lemma 17. ut

B Transportation Problem

In 1941 Hitchcock and, independently, in 1947 Koopmans considered the problem
which is usually referred to as the (homogeneous) transportation problem. This
problem can be intuitively described as: a homogeneous product is to be shipped

18 G. Bacci, G. Bacci, K. Larsen, R. Mardare

in the amounts a1, . . . , am respectively, from each of m shipping origins and
received in amounts b1, . . . , bn respectively, by each of n shipping destinations.
The cost of shipping a unit amount from the i-th origin to the j-th destination
is ci,j and is known for all combinations (i, j). The problem is to determine an
optimal shipping schedule, i.e. the amount xi,j to be shipped over all routes (i, j),
which minimizes the total cost of transportation.

It can be easily formalized as a linear programming problem

minimize
∑m
i=1

∑n
j=1 ci,j · xi,j

such that
∑n
j=1 xi,j = ai (i = 1, . . . ,m)∑m
i=1 xi,j = bj (j = 1, . . . , n)

xi,j ≥ 0 (i = 1, . . . ,m and j = 1, . . . , n)

The set of schedules feasible for a transportation problem, which is formalized
as a conjunction of linear constraints, describes a (bounded) convex polytope in
R2, often called transportation polytope.

There are several algorithms in literature which efficiently solve (not neces-
sarily homogeneous) transportation problems. Among these we recall [7,10].

C Experimental Results (detailed data)

In this appendix we provide detailed data of all the experiments discussed in
Section 6.

On-the-Fly Exact Computation of Bisimilarity Distances 19

States out-degree Time (s) # TPs

5

2 0.00400676 0.108108
3 0.00594318 0.272727
4 0.0139438 0.89375
5 0.0219477 1.30233

6

2 0.00418537 0.0829268
3 0.0115532 0.548936
4 0.0181834 1.31878
5 0.0503963 3.01843
6 0.0659359 3.26496

7

2 0.00381973 0.108844
3 0.0168408 0.980892
4 0.045375 2.64329
5 0.0953065 4.56774
6 0.171368 6.73054
7 0.190202 6.6859

8

2 0.00492955 0.0863636
3 0.0247971 1.34606
4 0.0574707 3.01171
5 0.127983 5.57985
6 0.194809 7.02206
7 0.316305 9.49161
8 0.426304 10.7912

9

2 0.00858527 0.292636
3 0.0259426 1.29074
4 0.0742248 3.33333
5 0.17075 5.59023
6 0.448721 11.3662
7 0.554762 12.2854
8 0.745632 13.875
9 1.11997 17.1407

10

2 0.00921778 0.201481
3 0.0583405 2.03887
4 0.154308 4.8458
5 0.298055 7.61401
6 0.75986 13.313
7 0.899531 14.5403
8 1.81921 22.0646
9 2.62714 26.4177
10 3.32188 26.5842

11

2 0.0277172 0.495146
3 0.0766988 1.82706
4 0.299206 6.05806
5 0.72154 11.3061
6 1.86622 17.7955
7 1.70401 17.1671
8 3.19049 33.9219
9 3.80195 31.5558
10 4.52554 31.0671
11 6.20838 36.8718

States out-degree Time (s) # TPs

12

2 0.0154774 0.455709
3 0.0428891 1.62038
4 0.250268 6.65647
5 0.642051 13.3423
6 2.76465 25.1563
7 2.35534 23.0476
8 3.33388 28.0218
9 8.58611 40.2267
10 9.53899 41.2665
11 8.56025 43.165
12 18.5177 64.8665

13

2 0.011122 0.286942
3 0.06082 1.88134
4 0.573837 8.97117
5 0.964231 14.4766
6 2.78855 23.8415
7 6.00371 34.8411
8 9.11574 39.7318
9 10.9838 51.6655
10 15.0667 49.8645
11 24.1127 65.2042
12 22.8915 66.0113
13 32.8509 68.6738

14

2 0.0116639 0.269461
3 0.0894778 2.79441
4 0.549372 10.6123
5 1.61925 17.9549
6 3.19621 24.761
7 7.1762 42.2557
8 10.674 50.3776
9 20.8513 62.4393
10 29.753 72.7825
11 42.3095 85.4986
12 56.4491 90.0443
13 75.946 99.7807

20

2 0.0173417 0.5
3 0.35631 6.36833
4 1.5266 13.1367
5 10.0704 38.8383

30
2 0.07566 0.855
3 4.66113 17.3167
4 74.8146 76.2642

50
2 0.093105 0.93
3 27.2147 30.8217
4 2234.54 225.394

	On-the-Fly Exact Computation of Bisimilarity Distances

