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Motivations

Markov Decision Processes with Rewards
+ external nondeterminism + probabilistic behavior

+ many useful applications (A.l., planning, games, biology, ...)

Bisimilarity Distances
(bisimilarity is not robust: it only relates states with identical behaviors)

-+ measure the behavioral similarity between states
-+ support approximate reasoning on probabilistic systems

-+ need of efficient methods for computing bisim. distances

Compositionality M = M; @ My ® -+ - @ M,

-+ may suffer from an exponential growth of the state space
(the parallel composition of n systems with m states has m” states!)

-+ exploit the structure of systems to compute bisim. distances

)
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Markov Decision Processes with Rewards (MDPs)

finite set of states set of labels
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probability transition function v funeiien
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Markov Decision Processes with Rewards (MDPs)

finite set of states set of labels

M= (S,AT,p)

probability transition function v funeiien
T: S XA = A(S) piSXA—SR

S0 )
a[3l/ \QH] Executions: w = (o, a0)(s1,a1) - - -
PR Discounted accumulated reward e (0,1)
l’/// ///l \\\l .
//,/3 K 3 \? R)\(w) = ZiGN Ao ,O(S,', 3/)
s1” Sy 5

Goal: To find policies m: S — A that maximize the expected value
of Ry on probabilistic executions starting from a given state.




Bisimilarity for MDPs

Extends probabilistic bisimilarity on Markov chains [Larsen-Skou'91]

Stochastic Bisimulation on M [Givan et al. AI'03]
Equivalence relation R C S x S such that,

p(s.a) = plt,a)

VR-equiv. class C. Z 7(s,a)(c) = Z 7(t,v)(c)

ueC ueC

sRt — VaeA.

Stochastic Bisimilarity on M:

s~y t <= s Rt for some stochastic bisimulation R on M.



Bisimilarity is not robust enough
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From equivalences to distances

Pseudometrics d: S x § — R>q are the quantitative analogue of

an equivalence relation

equivalence pseudometric

S=s ~ d(s,s) =0
S=t = t=s ~ d(s,t) =d(t,s)
= = =t ~ d(s,u)+d(ut)>d(s,t)

Bisimilarity Pseudometric: d(S, t) =0 << s~ t
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From equivalences to distances

Pseudometrics d: S x § — R>q are the quantitative analogue of
an equivalence relation

equivalence pseudometric
S=s ~ d(s,s) =0
S=t = t=s ~ d(s,t) =d(t,s)

=

2
1

s t ~ d(s,u)+d(u,t) >d(s,t)

Bisimilarity Pseudometric: d(S, t) =0 << s~ t

We consider the A-discounted bisimilarity distances
0r: S xS — R proposed by Ferns et al. [UAI'04]

6
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From equivalences to distances

Bisimulation

R
St It

T(S, a) |E—R| T(t, a)
7(s,a)(C) = (¢, a)(C)

YV R-equiv. class

Metric analogue

d(s,t) <e
s < -t
7(s,a) ~ ~ 7(t,a)



Kantorovich Metric: 7,: A(S) x A(S) — Rxg

The distance between 7(s, a) and 7(t, a)
is the optimal value of a Transportation Problem

) YuesS Zves UJ(”: V) = 7(57 a)(u)
Tq(7(s,a), 7(t,a)) = min d(u,v) - w(u,v
d( (S ) (t 3)) {U;S ( ) ( ) Vv eES ZuES W(u7 V) = T(t, a)(v)
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Kantorovich Metric: 7,: A(S) x A(S) — Rxg

The distance between 7(s, a) and 7(t, a)
is the optimal value of a Transportation Problem

) Yues Zves w(u,v) = 7(s,a)(uv)
Tq(7(s,a), 7(t,a)) = min d(u,v) - w(u,v
d( (S ) (t 3)) {U;S ( ) ( ) Vv eES ZuES W(u7 V) = T(t, a)(v) }

matching w € MN(7(s,a), 7(t,a))

w can be understood as transportation of 7 (s, a) to 7(t, a).

~el : t’a)(tb\ ot
w(si, ) ~, i“‘ %
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Bisimilarity Pseudometric [Ferns et al. UAI'04]

The bisimilarity pseudometric (%\Vl is the least fixed point of the
following operator on pseudometrics

F(d)(s. 1) = max {|o(s, ) — p(t, ) +ATa(r(s,2). 7(t, 2)) }

distance between rewards

and recursively. ..

distance between
transition probabilities
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Systems can be conveniently represented as the algebraic
composition of simpler sub-systems
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Algebraic operators on MDPs

Systems can be conveniently represented as the algebraic
composition of simpler sub-systems

How to define operators on MDPs?

Mi@My = (51 % S0, AL ®a As, Tt @7 T2, p1 Q) T2)

probability
transition
function

set of set of
states actions

reward
function
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Example 1: Synchronous parallel composition

My | My = (51 % S5, AN Ao, 71 |7 T2, p1 | p2)

a[n] , a[r] ,
Sl —p Sl R, S

a[n+nr]

s1| s p1-p2 51 | Sé
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Example 1: Synchronous parallel composition

My | My = (51 % S5, AN Ao, 71 |7 T2, p1 | p2)

a[n] , a[r]

/
51— ;i 51 22— "m S
a[n+nr]

s1 ‘ 2 p1-p2 51 ’ Sé

(71 |7 72)((51,52), @)(s1, %2) = 71(51, 3)(51) - T2(52, @)(52) ,

(P1 1p p2)((s1,52), @) = p1(s1,a) + p2(s2, a) -

11/22



Example 2: CCS-like parallel composition

Ml H M2 — (51 X 527A1 U A277_1 HT T2, P1 Hp p2)

alr] alr]

st ——p Sy ad A S —p Sh a¢ A
a[r] a[r]
sills2 ——p s [l s sills2 ——pslls
a[r] a[r]
Sl —7p S 2 —p S
a[r1+r2]
s || s2 pips 51l S
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Example 2: CCS-like parallel composition

Ml H M2 — (51 X 527A1 U A277_1 HT T2, P1 Hp p2)

oI, a1
51 []psi a¢h 2 —p S a¢ A
alr] , alr] ,
sl s rp sy | 52 silfso —=ps1 5
a[rI] a[rg]
51 Pl 52 —>p2
a[r1+r2]
sl s e 511 S
T1(s1, a)(sy) ifag Ay and sy = s}
/oy _ ) m2(s2,a)(sy) ifag Apands =s|
(11 I+ m1)((s1, $2), a)(s1, 5p) = (1, 8)(s) - Ta(s2, a)(sL) ifa € AN Ay
0 otherwise
pi(s1, a) ifag Ay
(p1 llp P2)((s1552), @) =  p2(s2, a) ifag A
p1(s1,a) + pa(s2,8) ifa€ ApNA

12 /22



Metric analogue of congruence
Operators over MDPs are well-behaved when they are congruencial
w.r.t. bisimilarity:
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Safe algebraic operators on MDPs

Proving non-extensiveness for ® may lead to rather involved proofs
(631 is defined as the least fixed point of FM)

... we characterized a class of operators on MDPs

p-Safe operators

F){M1®M2(Hdla dhlp) C ||FAMl(d1), FAMz(dZ)Hp

Theorem: p-Safeness = non-extensiveness

\/ Synch. parallel comp. \/ CCS-like parallel comp. J

14 /22



Computing the
behavioral distance

given s, t € S, to compute 63(s, t)

On-the-fly algorithm Compositional strategy
[Bacci?,Larsen,Mardare TACAS'13] + exploit the compositional
+ lazy exploration of M structure of M; ® Mo

-+ save comput. time + space

15 /22



FM(d)(s. 1) = max {Ip(s,2) = p(t. a)| + A - To(r(s,2). 7(£,2)) |
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Alternative characterization of 57

F/<\A(d)(57 t) = maz\<{|p(s, a) - p(t, a)' +A- 7:!(7-(57 a)vT(t7 a))}

ac

= TSX{V)(& a) — p(t,a)| + A - mingen(r(s,a),r(t,2)) Z d(u,v) - w(u, V)}
u,veS
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Alternative characterization of 57

F/<\A(d)(57 t) = maz\<{|p(s, a) - p(t, a)' +A- 7:!(7-(57 a)vT(t7 a))}

ac

= TSX{V)(& a) — p(t,a)| + A - mingen(r(s,a),r(t,2)) XG:S d(u,v) - w(u, V)}

acA
s,teS

F&Z(d)(s, t) = max{\p(s, a) —p(t,a)| + A Z d(u,v)- w;t(u, v)}

acA
u,veS

Coupling: C = {wZ, € N(7(s,a),7(t,a))}

we call discrepancy, ’yg, the least fixed point of I‘g

53 = min{7§ | C coupling for M} for all A € (0,1).

16
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On-the-fly strategy [Bacci?-Larsen-Mardare TACAS’13]

C1 9\ C = A CAR
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On-the-fly strategy

c c
C1 A\ C <= 7' C)?

[Bacci?-Larsen-Mardare TACAS’13]

Greedy strategy

Moving Criterion:
Ci={..,wi, .-}
w3, not opt. w.r.t. TP(’yf",T(u, a), 7(v,a))

u,v
Improvement:
Civ1=A{...,w* ...}, where
w* optimal sol. for TP(’yf\j",T(u,a),T(v,a))

v
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On-the-fly strategy

c c
C1 A\ C = 7 B9y

N

Heuristics for a better
starting coupling?

C3

[Bacci?-Larsen-Mardare TACAS’13]

Greedy strategy

Moving Criterion:
Ci={..,w3,,...}

»Yuvo

a

wy., ot opt. w.r.t. TP(fyf",T(u, a), 7(v,a))
Improvement:
Civ1=1{...,w", ...}, where

w* optimal sol. for TP(’yf\j",T(u,a),T(v,a))

| A
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A Compositional Heuristic

How to obtain a good starting coupling C*?

Given that M = My ® My, non-extensiveness says that
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A Compositional Heuristic

How to obtain a good starting coupling C*?

Given that M = M5 ® M, non-extensiveness says that

Moo M My oM
52 A 0, 63 e = vy 2

Good? when it doesn’t exceed the upper-bound

HOW? from Dy and D,

18 /22



Lifting algebraic operators on Couplings

Lifting operator

My, Mob> M1 @ Ms

C1, Cvz — C1 é* Co
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Lifting algebraic operators on Couplings

Lifting operator

My, Mob> M1 @ Ms

C1, 52 — C1 é* Co

p-Safe lifting operator
r§1°% |y, dllo) E M5 (), S ()l

YEMe AP 5t 5|,

where D; is a coupling for M; minimal w.r.t. <



The Pipeline Example

Eq

readyo

ao[1] l

07 "\ 03
7/ A
.k/ \N
workingg stopg
n
I bo[-1] g
0.2} L1 | el
N el 08 \\

=

ready;

ar[1] l

06 /"~ 04
7/ A
. N
.k N
working; stop1
Al
! bl[ 1]
02 1 '\ az[4]
Ny. -7 08 N
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The Pipeline Example

Eq Eq

E,

readyo ready; ready,
ao[l]l =Y 31[111 LY az{l]l
07 /"~ 03 o* 06 "\ 04 o’ 05 "\ 05
7/ A 7/ A 7/ A
L = , L N , L N
workingg stopg K working; stop1 K working, stopz
hl ?‘ ht nt
Dbl T IS v D el
0.2\ PRSI A1) 0.2} g 1 V| 204 0.3 P! '\ as[4]
NN igptas 08 AN Ny.-T 08 N Ny -7 07 N



Experimental Results

| Query | Instance | OTF | COTF | # States |
Eo || Ex 0.654791 | 0.97248 9
E || E 0.702105 | 0.801121 9
All pairs E | E | E 48.5982 | 13.5731 27
Eo | Ei || B2 23.1984 | 19.9137 27
Eo | E1 || Ex 126.335 | 13.6483 27
Eo || Eo || Eo 49.1167 | 14.1075 27
Bl Bl E|E | E 16.7027 | 11.6919 243
El&GE]|E]|E& 20.2666 | 16.6274 243
Single pair E|E|E|E]| E 22.8357 | 10.4844 243
E|E|E]| El E 11.7968 | 6.76188 243
E1 H E2 H EQ || EO || E2 || E2 Time-out 79.902 729




Conclusion and Future Work

Results
generic definition of algebraic operators on MDPs
characterized a well-behaved class of operators (p-Safeness)

on-the-fly algorithm for behavioral pseudometrics

+ exact
+ avoids entire exploration of the state space
+ exploit compositional structure of the model

developed a proof of concept prototype
[http://people.cs.aau.dk/giovbacci/tools.html]

performs, on average, better than other proposals

Future work
formal analysis of time/space complexity
apply similar techniques on CTMCs, CTMDPs, etc. ..

N
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