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Abstract

The paper discusses the problem of sensitivity analysis in Gaussian Bayesian net-
works. The algebraic structure of the conditional means and variances, as rational
functions involving linear and quadratic functions of the parameters, are used to sim-
plify the sensitivity analysis. In particular the probabilities of conditional variables
exceeding given values and related probabilities are analyzed. Two examples of appli-
cation are used to illustrate all the concepts and methods.
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1 Introduction

Sensitivity analysis is becoming an important and popular area of work. When solving
practical problems, applied scientists are not satisfied enough with getting results coming
from models, but they require a sensitivity analysis, indicating how sensitive the resulting
numbers are to changes in the parameter values, to be performed (see Castillo, Gutiérrez and
Hadi [4], Castillo, Gutiérrez, Hadi and Solares [5], Castillo, Solares, and Gómez.[6, 7, 8]).

In some cases, the parameter selection has an extreme importance in the final results. For
example, it is well known how sensitive are the distributional assumptions and parameter
values to tail distributions (see Galambos [14] or Castillo [2]). If this influence is neglected,
the consequences can be disastrous. Thus, the relevance of sensitivity analysis.

Laskey [17] seems to be the first to address the complexity of sensitivity analysis of
Bayesian networks, by introducing a method for computing the partial derivative of a poste-
rior marginal probability with respect to a given parameter. Castillo, Gutiérrez and Hadi[5, 4]
show that the function expressing the posterior probability is a quotient of linear functions
in the parameters and the evidence values in the discrete case, and of the means, variances
and evidence values, but covariances can appear squared. This discovery allows simplifying
sensitivity analysis and making it computationally efficient (see, for example, Kjaerulff and
van der Gaag [16], or Darwiche [12]).

In this paper we address the problem of sensitivity analysis in Gaussian Bayesian net-
works and show how changes in the parameter and evidence values influence marginal and
conditional probabilities given the evidence.
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This paper is structured as follows. In Section 2 we remind the reader about Gaussian
Bayesian networks and introduce our working example. In Section 3 we discuss how to per-
form an exact propagation in Gaussian Bayesian networks. Section 4 is devoted to symbolic
propagation. Section 5 analyses the sensitivity problem. Section 6 presents the damage of
concrete structures example. Finally, Section 7 gives some conclusions.

2 Gaussian Bayesian Network Models

In this section we introduce Bayesian network models, but we first remind the reader the
definition of Bayesian network.

Definition 1 (Bayesian network) A Bayesian network is a pair (G,P), where G is a di-
rected acyclic graph (DAG), P = {p(x1|π1), . . . , p(xn|πn)} is a set of n conditional probability
densities (CPD), one for each variable, and Πi is the set of parents of node Xi in G. The
set P defines the associated joint probability density as

p(x) =
n
∏

i=1

p(xi|πi). (1)

The main two advantages of Bayesian networks are: (a) the factorization implied by (1),
and (b) the fact that conditionally independence relations can be inferred directly from the
graph G.

Definition 2 (Gaussian Bayesian network) A Bayesian network is said to be a Gaus-
sian Bayesian network if and only if the JPD associated with its variables X is a multivariate
normal distribution, N(µ, Σ), i.e., with joint probability density function:

f(x) = (2π)−n/2|Σ|−1/2 exp
{

−1/2(x − µ)T Σ−1(x − µ)
}

, (2)

where µ is the n-dimensional mean vector, Σ is the n × n covariance matrix, |Σ| is the
determinant of Σ, and µT denotes the transpose of µ.

Gaussian Bayesian networks have been treated, among others, by Kenley [15], Shachter
and Kenley [22]), and Castillo, Gutiérrez and Hadi [3]. The JPD of the variables in a
Gaussian Bayesian network can be specified as in (1) by the product of a set of CPDs whose
joint probability density function is given by

f(xi|πi) ∼ N



µi +
i−1
∑

j=1

βij(xj − µj), vi



 , (3)

where βij is the regression coefficient of Xj in the regression of Xi on the parents of Xi, Πi,
and

vi = Σi − ΣiΠi
Σ−1

Πi
ΣT

iΠi

is the conditional variance of Xi, given Πi = πi, where Σi is the unconditional variance of
Xi, ΣiΠi

is the covariances between Xi and the variables in Πi, and ΣΠi
is the covariance
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Figure 1: (a) The river in Example 1 and the selected cross sections, and (b) the Bayesian
network used to solve the problem.

matrix of Πi. Note that βij measures the strength of the relationship between Xi and Xj .
If βij = 0, then Xj is not a parent of Xi.

Note that while the conditional mean µxi|πi
depends on the values of the parents πi,

the conditional variance does not depend on these values. Thus, the natural set of CPDs
defining a Gaussian Bayesian network is given by a collection of parameters {µ1, . . . , µn},
{v1, . . . , vn}, and {βij | j < i}, as shown in (3).

The following is an illustrative example of a Gaussian Bayesian network.

Example 1 (Gaussian Bayesian network) Assume that we are studying the river in
Figure 1(a), where we have indicated the four cross sections A, B, C and D, where the water
discharges are measured. The mean time of the water going from A to B and from B to D is
one day, and the mean time from C to D is two days. Thus, we register the set (A, B, C, D)
with the corresponding delays. Assume that the joint water discharges can be assumed to
be normal distributions and that we are interested in predicting B and D, one and two
days later, respectively, from the observations of A and C. In Figure 1(b) we have shown
the graph associated with a Bayesian network that shows the dependence structure of the
variables involved.

Suppose that the random variable (A, B, C, D) is normally distributed, i.e., {A, B, C, D} ∼
N(µ, Σ). A Gaussian Bayesian network is defined by specifying the set of CPDs appearing
in the factorization (1), which gives

f(a, b, c, d) = f(a)f(b|a)f(c|a)f(d|b, c), (4)

where

f(a) ∼ N (µA, vA) ,

f(b|a) ∼ N (µB + βBA(a − µA), vB) , (5)

f(c|a) ∼ N (µC + βCA(a − µA), vC) ,

f(d|b, c) ∼ N (µD + βDB(b − µB) + βDC(c − µC), vD) .
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The parameters involved in this representation are {µA, µB, µC, µD}, {vA, vB, vC , vD},
and {βBA, βCB, βDB, βDC}.

Note that so far, all parameters have been considered in symbolic form. Thus, we can
specify a Bayesian model by assigning numerical values to the parameters above. For exam-
ple, for

µA = 3, µB = 4, µC = 9, µD = 14.

vA = 4; vB = 1; vC = 4; vD = 1, βBA = 1, βCA = 2, βDB = 1, βDC = 1.

we get

µ =











3
4
9
14











, Σ =











4 4 8 12
4 5 8 13
8 8 20 28
12 13 28 42











.

3 Exact Propagation in Gaussian Networks

Several algorithms have been proposed in the literature to solve the problems of evidence
propagation in these models. Some of them have originated from the methods for discrete
models. For example, Normand and Tritchler [19] introduce an algorithm for evidence propa-
gation in Gaussian network models using the same idea of the polytrees algorithm. Lauritzen
[18] suggests a modification of the join tree algorithm to propagate evidence in mixed models.

Several algorithms use the structure provided by (1) and (3) for evidence propagation
(see Xu and Pearl [23], and Chang and Fung [11]). In this section we present a conceptually
simple and efficient algorithm that uses the covariance matrix representation. An incremental
implementation of the algorithm allows updating probabilities, as soon as a single piece of
evidence is observed. The main result is given in the following theorem, which characterizes
the CPDs obtained from a Gaussian JPD (see, for example, Anderson [1]).

Theorem 1 Conditionals of a Gaussian distribution. Let Y and Z be two sets of
random variables having a joint multivariate Gaussian distribution with mean vector and
covariance matrix given by

µ =

(

µY

µZ

)

and Σ =

(

ΣY Y ΣY Z

ΣZY ΣZZ

)

,

where µY and ΣY Y are the mean vector and covariance matrix of Y , µZ and ΣZZ are the
mean vector and covariance matrix of Z, and ΣY Z = (ΣZY )T is the covariance of Y and
Z. Then the CPD of Y given Z = z is multivariate Gaussian with mean vector µY |Z=z and
covariance matrix ΣY |Z=z that are given by

µY |Z=z = µY + ΣY ZΣZZ−1
(z − µZ), (6)

ΣY |Z=z = ΣY Y − ΣY ZΣZZ−1
ΣZY . (7)
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Note that the conditional mean µY |Z=z depends on z but the conditional variance ΣY |Z=z

does not.
Theorem 1 suggests an obvious procedure to obtain the means and variances of any subset

of variables Y ⊂ X, given a set of evidential nodes E ⊂ X whose values are known to be
E = e. Replacing Z in (6) and (7) by E, we obtain the mean vector and covariance matrix
of the conditional distribution of the nodes in Y . Note that considering Y = X \ E we get
the joint distribution of the remaining nodes, and then we can answer questions involving
the joint distribution of nodes instead of the usual information that refers only to individual
nodes.

The methods mentioned above for evidence propagation in Gaussian Bayesian network
models use the same idea, but perform local computations by taking advantage of the fac-
torization of the JPD as a product of CPDs.

In order to simplify the computations, it is more convenient to use an incremental method,
updating one evidential node at a time (taking elements one by one from E). In this case we
do not need to calculate the inverse of a matrix because it degenerates to a scalar. Moreover,
µY and ΣY Z are column vectors, and ΣZZ is also a scalar. Then the number of calculations
needed to update the probability distribution of the nonevidential variables given a single
piece of evidence is linear in the number of variables in X. Thus, this algorithm provides a
simple and efficient method for evidence propagation in Gaussian Bayesian network models.

Due to the simplicity of this incremental algorithm, the implementation of this propa-
gation method in the inference engine of an expert system is an easy task. The algorithm
gives the CPD of the nonevidential nodes Y given the evidence E = e. The performance of
this algorithm is illustrated in the following example.

Example 2 Propagation in Gaussian Bayesian network models. Consider the Gaus-
sian Bayesian network given in Figure 1. Suppose we have the evidence {A = 7, C = 17, B =
8}.

If we apply expressions (6) and (7) to propagate evidence, we obtain the following:

After evidence A = 7: In the first iteration step, we consider the first evidential node
A = 7. We obtain the following mean vector and covariance matrix for the rest of the
nodes Y = {B, C, D}:

µY |A=7 =







8
17
26





 ; ΣY Y |A=7 =







1 0 1
0 4 4
1 4 6





 . (8)

After evidence A = 7, C = 17: The second step of the algorithm adds evidence C = 17;
we obtain the following mean vector and covariance matrix for the rest of the nodes
Y = {B, D}:

µY |A=7,C=17 =

(

8
26

)

; ΣY Y |A=7,C=17 =
(

1 1
1 2

)

. (9)

After evidence A = 7, C = 17, B = 8: Finally, after considering evidence B = 8 we get
the conditional mean and variance of D, which are given by µD|A=7,C=17,B=8 = 26,
ΣDD|A=7,C=17,B=8 = 1.
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4 Symbolic Propagation in Gaussian Bayesian Networks

In Section 3 we presented several methods for exact propagation in Gaussian Bayesian net-
works. Some of these methods have been extended for symbolic computation (see, for ex-
ample, Chang and Fung [11] and Lauritzen [18]). In this section we illustrate symbolic
propagation in Gaussian Bayesian networks using the conceptually simple method given
in Section 3. When dealing with symbolic computations, all the required operations must
be performed by a program with symbolic manipulation capabilities unless the algebraic
structure of the result be known. Figure 2 shows the Mathematica code for the symbolic
implementation of the method given in Section 3. The code calculates the mean and variance
of all nodes given the evidence in the evidence list.

Example 3 Consider the set of variables X = {A, B, C, D}with mean vector and covariance
matrix

µ =











p
4
9
q











and Σ =











a 4 d f
4 5 8 c
d 8 20 28
f c 28 b











. (10)

Note that some means and variances are specified in symbolic form, and that we have

ΣY Y =
(

5 c
c b

)

, ΣZZ =
(

a d
d 20

)

, ΣY Z =
(

4 8
f 28

)

. (11)

We use the Mathematica code in Figure 2 to calculate the conditional means and variances
of all nodes. The first part of the code defines the mean vector and covariance matrix of
the Bayesian network. Table 1 shows the initial marginal probabilities of the nodes (no
evidence) and the conditional probabilities of the nodes given each of the evidences {A = x1}
and {A = x1, C = x3}. An examination of the results in Table 1 shows that the conditional
means and variances are rational expressions, that is, ratios of polynomials in the parameters.
Note, for example, that for the case of evidence {A = x1, C = x3}, the polynomials are first-
degree in p, q, a, b, x1, and x3, that is, in the mean and variance parameters and in the
evidence variables, and second-degree in d, f , i.e., the covariance parameters. Note also the
common denominator for the rational functions giving the conditional means and variances.

The fact that the mean and variances of the conditional probability distributions of the
nodes are rational functions of polynomials is given by the following theorem (see Castillo,
Gutiérrez, Hadi, and Solares [5]).

Theorem 2 Consider a Gaussian Bayesian network defined over a set of variables X =
{X1, . . . , Xn} with mean vector µ and covariance matrix Σ. Partition X, µ, and Σ as
X = {Y, Z},

µ =

(

µY

µZ

)

, and Σ =

(

ΣY Y ΣY Z

ΣZY ΣZZ

)

,
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(* Definition of the JPD *)

M={p,4,9,q};
V={{a, 4, d, f},

{4, 5, 8, c},
{d, 8, 20, 28},
{f, c, 28, b}};

(* Nodes and evidence *)

X={A,B,C,D};
Ev={A,C};
ev={x1,x3};
(* Incremental updating of M and V *)

NewM=Transpose[List[M]];

NewV=V;

For[k=1, k<=Length[Ev], k++,

(* Position of the ith element of E[[k]] in X *)

i=Position[X,Ev[[k]]][[1,1]];

My=Delete[NewM,i];

Mz=NewM[[i,1]];

Vy=Transpose[Delete[Transpose[Delete[NewV,i]],i]];

Vz=NewV[[i,i]];

Vyz=Transpose[List[Delete[NewV[[i]],i]]];

NewM=My+(1/Vz)*(ev[[k]]-Mz)*Vyz;

NewV=Vy-(1/Vz)*Vyz.Transpose[Vyz];

(* Delete ith element *)

X=Delete[X,i];

(* Printing results *)

Print["Iteration step = ",k];

Print["Remaining nodes = ",X];

Print["M = ",Together[NewM]];

Print["V = ",Together[NewV]];

Print["--------------------"];

]

Figure 2: Mathematica code for symbolic propagation of evidence in a Gaussian Bayesian
network model.
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No Evidence

Node Mean Variance
A p a

B 4 5
C 9 20
D q b

Evidence A = x1

Node Mean µY |A=x1 Variance σY Y |A=x1

A x1 0

B
4(a − p + x1)

a

5a − 16

a

C
9a − dp + dx1

a

20a − d2

a

D
−fp + aq + fx1

a

ab − f2

a
Evidence A = x1 and C = x3

Node Mean µY |A=x1,C=x3 Variance σY Y |A=x1,C=x3

A x1 0

B
4(2a + (9 − d)d + (2d − 20)p + (20 − 2d)x1 + (2a − d)x3

20a − d2

36a + 64d − 5d2 − 320

20a − d2

C x3 0

D

−252a + 9df + (28d − 20f)p + (20a − d2)q

20a − d2

+
(20f − 28d)x1 + (28a − df)x3

20a − d2

(20ab − bd2 + 56df − 20f2 − 784a

20a − d2

Table 1: Means and variances of the marginal probability distributions of nodes, initially
and after evidence.
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where µY and ΣY Y are the mean vector and covariance matrix of Y , µZ and ΣZZ are the
mean vector and covariance matrix of Z, and ΣY Z is the covariance of Y and Z. Suppose
that Z is the set of evidential nodes. Then the conditional probability distribution of any
variable Xi ∈ Y given Z is normal, with mean and variance that are ratios of polynomial
functions in the evidential variables and the related parameters in µ and Σ. The polynomials
involved are of degree at most one in the conditioning variables, in the mean, and in the
variance parameters, and of degree at most two in the covariance parameters involving at
least one Z (evidential) variable. Finally, the polynomial in the denominator is the same for
all nodes.

In summary, we have

µY |E=e =
µY |ΣEE| + ΣY E |adjΣEE| (e − µE)

|ΣEE|
. (12)

ΣY |E=e =
ΣY Y |ΣEE| − ΣY E |adjΣEE| ΣEY

|ΣEE|
. (13)

Thus, we can conclude the following:

1. The parameters in µY and µE appear in the numerator of the conditional means in
linear form.

2. The parameters in ΣY Y appear in the numerator of the conditional variances in linear
form.

3. The parameters in ΣY E appear in the numerator of the conditional means and variances
in linear and quadratic forms, respectively.

4. The variances and covariances in ΣEE appear in the numerator and denominator of the
conditional means and variances in linear, and linear or quadratic forms, respectively.

5. The evidence values appear only in the numerator of the conditional means in linear
form.

Note that because the denominator polynomial is identical for all nodes, for implementation
purposes it is more convenient to calculate and store all the numerator polynomials for each
node and calculate and store the common denominator polynomial separately.

4.1 Extra Simplifications

Since the CDP p(Xi = j|E = e) does not necessarily involve parameters associated with
all nodes, we can identify the set of nodes which are relevant to the calculation of p(Xi =
j|E = e). Thus, important extra simplifications are obtained by considering only the set of
parameters associated with the goal and the evidence variables. Doing this simplifications,
dependences on all those parameters associated with the removed nodes, are known to be
null.
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Example 4 (The river example) Assume that we are interested in calculating the prob-
ability P (B > 11|A = 7, C = 17), that is, the target node is B and the evidential nodes A
and C. Then, from (10), the mean and covariance matrix of {A, B, C} are

µ =







p
4
9





 and Σ =







a 4 d
4 5 8
d 8 20





 , (14)

that implies independence on b, c, f and q.
Similarly, for the probability P (D > 30|A = 7, C = 17), the mean and covariance matrix

of {A, C, D} are

µ =







p
9
q





 and Σ =







a d f
d 20 28
f 28 b





 . (15)

that implies the independence on c.

5 Sensitivity Analysis

When dealing with Gaussian Bayesian networks, one is normally involved in calculating
probabilities of the form:

P (Xi > a|e) = 1 − FXi|e(a),
P (Xi ≤ a|e) = FXi|e(a)

P (a < Xi ≤ b|e) = FXi|e(b) − FXi|e(a)
(16)

and one is required to perform a sensitivity analysis on these probabilities with respect to
a given parameter θ or evidence value e. Thus, it becomes important to know the partial
derivatives

∂FXi|e(a; µ(θ; e), σ(θ; e))

∂θ
and

∂FXi|e(a; µ(θ; e), σ(θ; e))

∂e
.

In what follows we use the compact notation ρ = (θ, e), and denote by ρ a single
component of ρ.

We can write

∂FXi|e(a; µ(ρ), σ(ρ))

∂ρ
=

∂FXi|e(a; µ(ρ), σ(ρ))

∂µ

∂µ(ρ)

∂ρ
+

∂FXi|e(a; µ(ρ), σ(ρ))

∂σ

∂σ(ρ)

∂ρ
. (17)

Since

FXi|e(a; µ(ρ), σ(ρ)) = Φ(
a − µ(ρ)

σ(ρ)
) (18)

we have
∂FXi|e(a; µ(ρ), σ(ρ))

∂µ
= fN(0,1)(

a − µ(ρ)

σ(ρ)
)

(

−1

σ(ρ)

)

(19)

and
∂FXi|e(a; µ(ρ), σ(ρ))

∂σ
= fN(0,1)(

a − µ(ρ)

σ(ρ)
)

(

µ(ρ) − a

σ(ρ)2

)

(20)
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and then (17) becomes

∂FXi|e(a; µ(ρ), σ(ρ))

∂ρ
= fN(0,1)(

a − µ(ρ)

σ(ρ)
)

[(

−1

σ(ρ)

)

∂µ(ρ)

∂ρ
+

(

µ(ρ) − a

σ(ρ)2

)

∂σ(ρ)

∂ρ

]

(21)

Thus, the partial derivatives
∂FXi|e(a; µ(ρ), σ(ρ))

∂ρ
can be obtained by a single evaluation

of µ(ρ) and σ(ρ), and determining the partial derivatives
∂µ(ρ)

∂ρ
and

∂σ(ρ)

∂ρ
with respect to

all the parameters or evidence variables being considered. Thus, the calculus of these partial
derivatives becomes crucial.

There are two ways of calculating these partial derivatives: (a) using the algebraic struc-
ture of the conditional means and variances, and (b) direct differentiations of the formulas
(6) and (7). Here we use only the first method.

To calculate
∂µN (ρ)

∂ρ
and

∂σN (ρ)

∂ρ
for node N we need to know the dependence of µN(ρ)

and σN(ρ) on the parameter or evidence variable ρ. This can be done with the help of
Theorem 2. To illustrate, we use the previous example.

From Theorem 2 we can write

µ
Y |A=x1,C=x3

N (a) =
α1a + β1

γa + δ
; σ

Y |A=x1,C=x3

N (a) =
α2a + β2

γa + δ
, (22)

where a is the parameter introduced in the equation (10), N is B or D, and since we have

only 6 unknowns, calculation of µ
Y |A=x1,C=x3

N and σ
Y |A=x1,C=x3

N for three different values
of a allows determining the constant coefficients α1, α2, β1, β2, γ and δ. Then, the partial
derivatives with respect to a become

∂µ
Y |A=x1,C=x3

N (a)

∂a
=

α1δ − β1γ

(γa + δ)2
;

∂σ
Y |A=x1,C=x3

N (a)

∂a
=

α2δ − β2γ

(γa + δ)2
. (23)

Similarly, from Theorem 2 we can write

µ
Y |A=x1,C=x3

N (f) =
α3f + β3

γ1
; σ

Y |A=x1,C=x3

N (f) =
γ4f

2 + α4f + β4

γ1
(24)

where f is the parameter introduced in equation (10).

Since we have only 6 unknowns, calculation of a total of 6 values of µ
Y |A=x1,C=x3

N (f)

and σ
Y |A=x1,C=x3

N (f) for different values of f allows determining the constant coefficients
α3, α4, β3, β4 and γ1. Then, the partial derivatives with respect to f becomes

∂µ
Y |A=x1,C=x3

N (f)

∂f
=

α3

γ1

;
∂σ

Y |A=x1,C=x3

N (f)

∂f
=

2γ4f + α4

γ1

. (25)

It is worthwhile mentioning that if N = B, then α3 = α4 = β3 = β4 = 0, and we need no
calculations.
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Finally, we can also obtain the partial derivatives with respect to evidence values. From
Theorem 2 we can write

µ
Y |A=x1,C=x3

N (x1) = α5x1 + β5; σ
Y |A=x1,C=x3

N (x1) = γ2 (26)

and since we have only 3 unknowns, calculation of a total of 3 values of µ
Y |A=x1,C=x3

N (x1) and

σ
Y |A=x1,C=x3

N (x1) for different values of x1 allows determining the constant coefficients α5, β5

and γ2. Then, the partial derivatives with respect to x1 become

∂µ
Y |A=x1,C=x3

N (x1)

∂x1

= α5;
∂σ

Y |A=x1,C=x3

N (x1)

∂x1

= 0. (27)

It is worthwhile mentioning that if partial derivatives with respect to several parameters
are to be calculated, the number of calculations reduces even more because some of them
are common.

6 Damage of Concrete Structures

In this section we introduce a more complex example. The objective is to assess the damage
of reinforced concrete structures of buildings. To this end, a Gaussian Bayesian network
model is used.

The model formulation process usually starts with the selection of variables of interest.
The goal variable (the damage of a reinforced concrete beam) is denoted by X1. A civil
engineer initially identifies 16 variables (X9, . . . , X24) as the main variables influencing the
damage of reinforced concrete structures. In addition, the engineer identifies seven interme-
diate unobservable variables (X2, . . . , X8) that define some partial states of the structure.
Table 2 shows the list of variables and their definitions. The variables are measured using a
scale that is directly related to the goal variable, that is, the higher the value of the variable
the more the possibility for damage.

The next step in model formulation is the identification of the dependency structure
among the selected variables. This identification is also given by a civil engineer.

In our example, the engineer specifies the following cause-effect relationships. The goal
variable X1, depends primarily on three factors: X9, the weakness of the beam available in
the form of a damage factor; X10, the deflection of the beam; and X2, its cracking state.
The cracking state, X2, is influenced in turn by four variables: X3, the cracking state in
the shear domain; X6, the evaluation of the shrinkage cracking; X4, the evaluation of the
steel corrosion; and X5, the cracking state in the flexure domain. Shrinkage cracking, X6,
depends on shrinkage, X23, and the corrosion state, X8. Steel corrosion, X4, is influenced
by X8, X24, and X5. The cracking state in the shear domain, X3, depends on four factors:
X11, the position of the worst shear crack; X12, the breadth of the worst shear crack; X21,
the number of shear cracks; and X8. The cracking state in the flexure domain, X5 is affected
by three variables: X13, the position of the worst flexure crack; X22, the number of flexure
cracks; and X7, the worst cracking state in the flexure domain. The variable X13 is influenced
by X4. The variable X7 is a function of five variables: X14, the breadth of the worst flexure

12



Table 2: Definitions of the variables related to the damage assessment example.

Xi Definition
X1 Damage assessment
X2 Cracking state
X3 Cracking state in shear domain
X4 Steel corrosion
X5 Cracking state in flexure domain
X6 Shrinkage cracking
X7 Worst cracking in flexure domain
X8 Corrosion state
X9 Weakness of the beam
X10 Deflection of the beam
X11 Position of the worst shear crack
X12 Breadth of the worst shear crack
X13 Position of the worst flexure crack
X14 Breadth of the worst flexure crack
X15 Length of the worst flexure cracks
X16 Cover
X17 Structure age
X18 Humidity
X19 PH value in the air
X20 Content of chlorine in the air
X21 Number of shear cracks
X22 Number of flexure cracks
X23 Shrinkage
X24 Corrosion

crack; X15, the length of the worst flexure crack; X16, the cover; X17, the structure age; and
X8, the corrosion state. The variable X8 is affected by three variables: X18, the humidity;
X19, the PH value in the air; and X20, the content of chlorine in the air.

All these relationships are summarized in the directed acyclic graph of Figure 3, that is
the network structure of the selected Gaussian Bayesian network model.

Then, the next step is the definition of the JPD. Suppose that the means of all variables
are zeros, the coefficients βij in (3) are defined as shown in Figure 3, and the conditional
variances are given by

vi =

{

10−4, if Xi is unobservable,
1, otherwise.

To propagate evidence in the above Gaussian Bayesian network model, we use the incre-
mental algorithm described in Theorem 1. For illustrative purpose, we assume that the en-
gineer examines a given concrete beam and sequentially obtains the values {x9, x10, . . . , x24}
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Figure 3: Directed graph for the damage assessment of reinforced concrete structure.

corresponding to the observable variables X9, X10, . . . , X24. For the sake of simplicity, sup-
pose that the obtained evidence is e = {X9 = 1, . . . , X24 = 1}, which indicates serious
damage of the beam.

Again, we wish to assess the damage (the goal variable, X1). The conditional mean vector
and covariance matrix of the remaining (unobservable and goal) variables Y = (X1, . . . , X8)
given e, obtained using the incremental algorithm, are

E(y|e) = (2.2, 3.32, 2.0, 4.19, 3.50, 2.76, 7.21, 15.42),

V ar(y|e) =



























0.00010 . . . 0.00009 0.00003 0.00012 0.00023
0.00006 . . . 0.00008 0.00002 0.00015 0.00029
0.00005 . . . 0.00004 0.00001 0.00009 0.00018
0.00005 . . . 0.00010 0.00002 0.00022 0.00043
0.00009 . . . 0.00019 0.00003 0.00020 0.00039
0.00003 . . . 0.00003 0.00011 0.00011 0.00021
0.00012 . . . 0.00020 0.00010 0.00045 0.00090
0.00023 . . . 0.00039 0.00021 0.00090 1.00200



























.

Thus, the conditional distribution of the variables in Y is normal with the above mean
vector and variance matrix.

Note that in this case, all elements in the covariance matrix except for the conditional
variance of X1 are close to zero, indicating that the mean values are very good estimates for
E(X2, . . . , X8) and a reasonable estimate for E(X1).

We can also consider the evidence sequentially. Table 3 shows the conditional mean and
variance of X1 given that the evidence is obtained sequentially in the order given in the
table. The evidence ranges from no information at all to complete knowledge of all the
observed values x9, x10, . . . , x24. Thus, for example, the initial mean and variance of X1

are E(X1) = 0 and V ar(X1) = 19.26, respectively; and the conditional mean and variance
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Figure 4: Conditional distributions of node X1 corresponding to the cumulative evidence in
Table 3. The step number is written near the curve.

of X1 given X9 = 1 are E(X1|X9 = 1) = 0.30 and V ar(X1|X9 = 1) = 19.18. Note that
after observing the key evidence X9 = 1, the mean of X1 has increased from 0 to 0.3
and the variance has decreased from 19.26 to 19.18. As can be seen in the last row of
the table, when all the evidences are considered, E(X1|X9 = 1, . . . , X24 = 1) = 15.42 and
V ar(X1|X9 = 1, . . . , X24 = 1) = 1.0, an indication that the building is seriously damaged. In
Figure 4 we show several of the conditional normal distributions of X1 when a new evidence
is added. The figure shows the increasing damage of the beam at different steps, as would
be expected. Note that the mean increases and the variance decreases in almost all cases,
an indication of decreasing uncertainty.

Available Damage Available Damage
Step Evidence Mean Variance Step Evidence Mean Variance

0 None 0.00 19.26 9 X17 = 1 7.49 12.29
1 X9 = 1 0.30 19.18 10 X18 = 1 8.70 10.92
2 X10 = 1 1.00 18.69 11 X19 = 1 10.76 6.49
3 X11 = 1 1.98 17.73 12 X20 = 1 12.63 2.99
4 X12 = 1 3.24 16.14 13 X21 = 1 13.33 2.51
5 X13 = 1 4.43 17.72 14 X22 = 1 14.18 1.78
6 X14 = 1 5.35 13.88 15 X23 = 1 14.72 1.49
7 X15 = 1 6.27 13.04 16 X24 = 1 15.42 1.00
8 X16 = 1 6.88 12.66

Table 3: Mean and variances of the damage, X1, given the cumulative evidence of
x9, x10, . . . , x24.
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Suppose now that we are interested in the effect of the deflection of the beam, X10, on the
goal variable, X1. Then, we consider X10 as a symbolic node. Let E(X10) = m, V ar(X10) =
v, Cov(X10, X1) = Cov(X1, X10) = c. The conditional means and variances of all nodes
are calculated by applying the algorithm for symbolic propagation in Gaussian Bayesian
networks introduced in Figure 2. The conditional means and variances of X1 given the
sequential evidences X9 = 1, X10 = 1, X11 = x11, X12 = 1, X13 = x13, X14 = 1, are shown in
Table 4. Note that some of the evidences (X11, X13) are given in a symbolic form.

Note that the values in Table 3 are a special case of those in Table 4. They can be obtained
by setting m = 0, v = 1, and c = 0.7 and considering the evidence values X11 = 1, X13 = 1.
Thus the means and variances in Table 3 can actually be obtained from Table 4 by replacing
the parameters by their values. For example, for the case of the evidence X9 = 1, X10 =
1, X11 = x11, the conditional mean of X1 is (c − cm + 0.3v + 0.98vx11)/v = 1.98. Similarly,
the conditional variance of X1 is (−c2 + 18.22v)/v = 17.73.

Available Damage
Evidence Mean Variance

None 0 19.26

X9 = 1 0.3 19.18

X10 = 1
c − cm + 0.3v

v

−c2 + 19.18v

v

X11 = x11
c − cm + 0.3v + 0.98vx11

v

−c2 + 18.22v

v

X12 = 1
c − cm + 1.56v + 0.98vx11

v

−c2 + 16.63v

v

X13 = x13
c − cm + 1.56v + 0.98vx11 + 1.19vx13

v

−c2 + 15.21v

v

X14 = 1
c − cm + 2.48v + 0.98vx11 + 1.19vx13

v

−c2 + 14.37v

v

Table 4: Conditional means and variances of X1, initially and after cumulative evidence.

7 Conclusions

From the previous sections, the following conclusions can be obtained:
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1. Sensitivity analysis in Gaussian Bayesian networks is greatedly simplified due to the
knowledge of the algebraic structure of conditional means and variances.

2. The algebraic structure of any conditional mean or variance is a rational function of
the parameters.

3. The degrees of the numerator and denominator polynomials in the parameters can be
immediately identified, as soon as the parameter or evidence value is defined.

4. Closed expressions for the partial derivatives of probabilities of the form P (Xi > a|e),
P (Xi ≤ a|e) and P (a < Xi ≤ b|e) with respect to the parameters, or evidence values,
can be obtained.

5. Much more that sensitivity measures can be obtained. In fact, closed formulas for the
probabilities P (Xi > a|e), P (Xi ≤ a|e) and P (a < Xi ≤ b|e) as a function of the
desired parameter, or evidence value, can be obtained.
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