External-Memory Sorting
(lecture notes)

SimonasSaltenis

1 External Memory Model

When data do not fit in main memory (RAM), external (or secoypdanemory is used.
Magnetic disks are the most commonly used type of externahomg When compared to
RAM, disks have these properties (see chapter 18 of [1] fooeerthorough discussion):

1. Usually disks can store much more data than RAM.

2. Access to data on disk drives is much slower than accesélb Ry orders of mag-
nitude).

3. Because of the mechanics of disk drives, it takes a lotrté tio access a random byte
on a disk, but it is relatively fast to transfer that byte anbsequent bytes from the
disk to RAM. This means that it is beneficial to access dathenlisk in large portions
calledblocks or pages. The block sizes from 2Kb to 16Kb are common for modern
disk drives.

Because access to disk drives is much slower than accessNh &#alysis of external-
memory algorithms and data structures usually focusesenumber of disk accesses (I/O
operations), not the CPU cost.

When data is stored on the disk, algorithms that are effigiemain memory may not be
efficient when the running time of the algorithm is expressgthe number of /0 operations.
External memory algorithms are designed to minimize thelremof I/O operations.

In the following we assume that we have a data filé\oflata elements (records). Each
disk block can storé? data elements. We also assume that the main memory avaitetbie
algorithm can storé/ data elements)/ < NN). Then the number of disk pages in the data
fileisn = N/B and the number of disk pages that fit in the available memaryis M /B.
Notice that we treat botB andM (orm) as important problem parameters in our asymptotic
performance bounds. They are not considered “just corsStauttich we can ignore.

2 Main-Memory Merge Sort

Before considering algorithms for external-memory sartive look at the merge-sort algo-
rithm for main-memory sorting. Some ideas from this aldoritare useful when considering
external-memory sorting (see Section 2 of [1] for more d&tai

The main component of the BRGE-SORT algorithm is the MERGE procedure, which
takes two sorted arrays as input and merges them into orexisanray.

The MERGE procedure repeatedly compares the smallest remainingeateitom one
input array with the smallest remaining element from theeothput array. It then moves

the smallest of the two elements to the output array and tepeatil one of the input arrays
becomes empty. At the end, all the remaining elements frenm¢im-empty array are moved
to the output array. Figure 1 illustrates the merging of twdex arrays, each storing four
integers. At each step of the algorithm, the smallest elésnienthe two arrays that are
compared are shown in bold.

Operation | Array 1| Array 2 | Output

comparel < 3
compare3 < 4
comparet < 5
compares < 6
compares < 8
comparer < 8

1,4,6,7

3
3

oo oo

o

00 00 C0 o 00
© © © © O v ©

copy array 2 to output
end

PRPPRPPRPPPPRP
W wWwwwww

5
S5,
5
5

oo o
~N N
I
o]

Ea i el N S

Figure 1: Merging two sorted arrays into one

Once we have the ERGE procedure, the MRGE SORT algorithm is very simple. Here,
it is assumed that FRGE(A, A1, A2) merges arraysi1 and A2 into array A.

MERGE-SORT(A)
1 if A contains more than one element
2 Copy the first half ofA into array A1, and the second half of into array A2
3 MERGESORT(A1)
4 MERGESORT(A2)
5

MERGHA, Al, A2)

As explained in [1], the running time of this algorithm@gn log, n), which is asymp-
totically optimal for the comparison-based main memoryisgr

3 External-Memory Merge Sort

If we “unwind” the recursion, the MRGE SORT algorithm works by first merging pairs of
“sub-arrays” of 1 element into sorted sub-arrays of 2 elds)¢hen merging pairs of sorted
sub-arrays of 2 elements into sorted sub-arrays of 4 elenantl so on. Let us call a sorted
sub-array of elementsrain. Then, in each step the number of runs decreases twofold and
the algorithm stops when only one run remains.

We can use the same procedure for external-memory sortimgpdiead of starting with
trivial runs of 1 element, we start with runs of sizé (the available main memory). Let us
assume thak points to a file that stores the input data which has to bedaneY” points
to an empty file. Thexternal-memory merge-sort algorithm has these two main phases:

e Phase 1 (produce initial runs): Repeat the following process until the end of iNeis
reached:

1. Read the nexi/ elements from fileX into main memory.
2. Sort them in main memory using any main-memory sortingritym.

2

3. Write the sorted elements at the end of Tile

At the end of this phase, we have, in fite [N/M | runs of M elements (the last run
may be shorter).

e Phase 2 (mergeruns): Repeat the following while there is more than one run in¥ite

1. Make fileX empty.

2. Repeat the following until the end of fik€ is reached: call WowAY-MERGEt0
merge the next two runs from filg into one run, which is written at the end of
file X. If only one run remains iy, just copy it at the end of fil&.

3. Exchange pointer& andY: make newX point to fileY and newY” to file X.

At the end of this algorithm the sorted sequence of elemeriisfile Y.

Phase 2 of the algorithm works in essentially the same wayeshie main-memory
merge sort, except that main-memongRIGEalgorithm can not be used to merge two runs of
M or more elements stored in external memory. Instead we usecaWRY-MERGE(X, Y, [, q,7)
algorithm, which merges the first run consisting of paigiesoughg — 1 from file Y with the
second run consisting of pageshroughr — 1 from file Y. The merged output is appended
to file X.

The Twoway-MERGE algorithm maintains three main-memory arrays of siéi.e.,
storing one disk page each). The first two arrBflsandBf2 are buffers for disk pages read
from the first and the second runs. The third array is an oudpffier. The algorithm works
exactly as the main-memory 8RGE, merging buffer8fl andBf2 into bufferBfo. If the end
of Bf1 or Bf2 is reached, the next page from the corresponding run is ré@aiain memory.
Also, as soon aBfo becomes full it is flushed to the end of file. Figure 2 visualizes the
merging of main memory buffer pages.

T Select smallest of Bfo

pl

Bf1[pl] and Bf2[p2]
Bf2 poT

p2!
Figure 2: Main-memory organization for two-way merging

In the pseudocode of WowAYy-MERGE, which is on the next page, we assume that
DiskRead(Bf, Y, k) reads thek-th page of fileY” into main-memory arrayf. Similarly,
DiskWrite(Bfo, X) appends the contents of main-memory alyto the end of fileX.

The described external-memory merge-sort algorithm canesfile of any size. Let us
analyze its running time, i.e., count the number of /O opens it performs.

Phase 1 of the algorithm just reads all the pages from¥filend writes the same amount
of pages to fileY". Thus2n = ©(n) I/O operations are performed (remember thas the
number of disk pages in the initial file).

In one iteration of the main loop of phase 2, disk pages ofualkrin fileY are read
once and the same amount of pages is written taXileAgain 2n = O(n) 1/O operations
are performed. How many loop iterations are there in phasg&sh iteration reduces the
number of runs twofold. We start withiV/M | = [n/m| runs and finish with one run. Thus,
there ardog,(n/m) loop iterations each doin@(n) /0 operations.

3

TwowaYy-MERGE(X, Y, L, ¢,)

1 r1<] > pointer to a page inrun 1

2 r2«gq > pointer to a page in run 2

3 DiskRead(Bfl, Y, rl) > buffer page for run 1
4 DiskRead(Bf2, Y, r2) > buffer page for run 2
5 ple1 > pointer to an element iBf1

6 p2—1 > pointer to an element iBf2

7 po—1 > pointer to an element iBfo

8 whilerl<gandr2<r

9 if Bf1[pl] < Bf2[p2]

10 Bfo[po] < Bf1[p1]

11 pl—pl+1

12 ifpl > B > need a new page from run 1
13 rte—rl+1

14 ifrl<gq > if not the end of run 1
15 DiskRead(Bf1, Y, r1)

16 pl—1

17 else > Bfl[pl] > Bf2[p2]

18 Bfo[po] « Bf2[p2)

19 p2 —p2+1

20 ifp2 > B > need a new page from run 2
21 r2+—r2+1

22 ifr2<r > if not the end of run 2
23 DiskRead(Bf2, Y, r2)

24 p2 — 1

25 po «— po+ 1
26 if po> B > output buffer pagdfo is full

27 DiskWrite(Bfo, X)
28 po«—1
29 ifrl=gq

30 Copy element8f2[p2], .. ., Bf2| B] to Bfo, write Bfo to disk (file X'), and copy

the remaining pages of run 2 (fror@ + 1 to » — 1) to the end ofX.
31 dse >r2=r
32 Do the same foBf1 and run 1.

Summing up the costs of phase 1 and phase 2 we get the totahgutime of
O(nlogy(n/m)). It turns out, this is not the best we can do.

How can we make the algorithm more efficient? The importaseolation is that, while
we use all the available main-memory in phase 1, we use onlyt ®fon available pages
of main-memory in phase 2. It is easy to see that allocatirggfabuffersBfl, Bf2 andBfo
does not change the number of performed 1/0O operationso(agthit reduces the number of
random 1/O operations—see the last section). Instead easetkt section explains, we need
to merge not two but more runs at the same time.

4 Two-Phase, Multiway Merge Sort

Thetwo-phase, multiway merge-sort algorithm is similar to the external-memory merge-sort
algorithm presented in the previous section. Phase 1 isaifme sbut, in phase 2, the main

loop is performed only once merging alN/M | runs into one run in one go. To achieve

this, multiway merging is performed instead of using theAdwAy-M ERGE algorithm.

The idea of multiway merging is the same as for the two-waygmer but instead of
having 2 input buffersgf1 andBf2) of B elements, we haveN /M| input buffers, eactB
elements long. Each buffer corresponds to one unfinishedcfore) run. Initially, all runs
are active. Each buffer has a pointer to the first unchosanegiein that buffer (analogous
to pl andp2 in TWOWAY-MERGE).

The multiway merging is performed by repeating these steps:

1. Find the smallest element among the unchosen elemeritshef enput buffers. Linear
search is sufficient, but if the CPU cost is also importantjimum priority queue can
be used to store pointers to all the unchosen elements it lnyffiers. In such a case,
finding the smallest element is logarithmic in the numbeihefdctive runs.

2. Move the smallest element to the first available positioth® output buffer.

3. If the output buffer is full, write it to the disk and reirglize the buffer to hold the next
output page.

4. If the buffer, from which the smallest element was justetalks how exhausted of
elements, read the next page from the corresponding ruro plages remain in that
run, consider the run finished (no longer active).

When only one active run remains the algorithm finishes ugaws in lines 30 and 32
of TwWowAY-MERGE—it just copies all the remaining elements to the end ofXile
Figure 3 visualizes multiway merging.

Input buffers,
one for each T
unfinished run

T Select smallest

unchosen element~ S Bfa
po!

Pointers to firﬁt
unchosen elements

Figure 3: Main-memory organization for multiway merging

It is easy to see that phase 2 of the two-phase, multiway rreagealgorithm performs
only ©(n) I/O operations and this is also the running time of the whiderithm. In spite
of this, the algorithm has a limitation—it can not sort veayge files.

If phase 1 of the algorithm produces more than- 1 runs (N/M > m — 1), all runs
can not be merged in one go in phase 2, because each run seguree-page input buffer

in main-memory and one page of main-memory is reserved éottiput buffer. How large
should the file be for this to happen?

Consider a computer with 256Mb of available main-memory teddisk page size of
8Kb. If the sorted elements are four-byte integédis= 226 and B = 2'!. Then,

N M
M>m_1 = N>M<§_1>:

M2
M=~ 24
B

The file of2%! four-byte integers occupies 8 terabytes. Thus, two-phmastiway merge
sort will work for most of the practical file sizes.

5 Multiway Merge Sort of Very Large Files

Sometimes there may be a need to sort extremely large filé®er is only a small amount
of available main memory. As described in the previous eactivo-phase, multiway merge
sort may not work in such situations.

A natural way to extend the two-phase, multiway merge sorfifes of any size is to
do not one but many iterations in phase 2 of the algorithmt iEhave employ the external-
memory merge-sort algorithm from Section 3, but insteadsifigi TWOWAY-MERGE, we
use the multiway merging (as described in the previous@®ctdo mergen — 1 runs from
file Y into one run in fileX. Then, in each iteration of the main loop of phase 2, we reduce
the number of runs by a factor ot — 1.

What is the running time of this algorithm, which we call signpnultiway merge sort.
Phase 1 and each iteration of the main loop of phase 2 take$ /O operations. After
phase 1, we start up withV/M | = [n/m] runs, each iteration of the main loop of phase
2 reduces the number of runs by a factornef— 1, and we stop when we have just one
run. Thus, there arbbg,, ;(n/m) iterations of the main loop of phase 2. Therefore, the
total running time of the algorithm i®(nlog,,_;(n/m)) = ©(nlog,, n — nlog,, m) =
O(nlog,,n —n) = O(nlog,, n).

Remember that the cost of the external-memory merge-ggotiim from Section 3 is
©(nlogy(n/m)). Thus, multiway merge sort is faster by afacto@a((1 S) logsy m)

log,, n
Actually, ©(nlog,, n) is a lower bound for the problem of external-memory sortifigat
is, multiway merge sort is an asymptotically optimal algaon.

6 Sequential vs. Random 1/0O

In all the analysis of the previous sections, we did not kiggtish between the sequential and
random access of disk pages. If sequential access is mueh fiaan random, then it may
be wise to minimize the number of random I/O operations, éfére total number of I/O
operations increases.

Let us look at the multiway merge-sort algorithm and let usuase that filesX and
Y consist of a sequence of sequential disk pages. While alatiosie 1/0 operations in
phase 1 access sequential disk pages, most of the I/O aperati phase 2 are random.
To increase the number of sequential disk accesses, we igatlysmodify the multiway
merging procedure by increasing the sizes of the input iffed the output buffer from one
disk page to a larger number of disk pages. Whenever an ingfarlis exhausted during
multiway merging, instead of doing one random disk-readratpmn, we do one random
and a number of sequential disk-read operations. If the earobruns after phase 1 is
much smaller thamn — 1, we can do this even without increasing the total number@©f I/

operations. (Exercise: think why this is true. How much canievease the size of the input
buffers without increasing the total number of I/O openasi®).

References

[1] Th.H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Steitnoduction to Algorithms.
2nd edition, MIT Press (2001)

[2] D. E. Knuth. The Art of Computer Programming: Volume 3 (Sorting and Searching).
2nd edition, Addison-Wesley (1998)

[3] H. Garcia-Molina, J. D. Ullman, and J. Widomatabase Systems. The compl ete Book.
International edition, Prentice Hall (2002).

