
External-Memory Sorting
(lecture notes)

SimonašSaltenis

1 External Memory Model

When data do not fit in main memory (RAM), external (or secondary) memory is used.
Magnetic disks are the most commonly used type of external memory. When compared to
RAM, disks have these properties (see chapter 18 of [1] for a more thorough discussion):

1. Usually disks can store much more data than RAM.

2. Access to data on disk drives is much slower than access to RAM (by orders of mag-
nitude).

3. Because of the mechanics of disk drives, it takes a lot of time to access a random byte
on a disk, but it is relatively fast to transfer that byte and subsequent bytes from the
disk to RAM. This means that it is beneficial to access data on the disk in large portions
calledblocks or pages. The block sizes from 2Kb to 16Kb are common for modern
disk drives.

Because access to disk drives is much slower than access to RAM, analysis of external-
memory algorithms and data structures usually focuses on the number of disk accesses (I/O
operations), not the CPU cost.

When data is stored on the disk, algorithms that are efficientin main memory may not be
efficient when the running time of the algorithm is expressedas the number of I/O operations.
External memory algorithms are designed to minimize the number of I/O operations.

In the following we assume that we have a data file ofN data elements (records). Each
disk block can storeB data elements. We also assume that the main memory availableto the
algorithm can storeM data elements (M < N). Then the number of disk pages in the data
file is n = N/B and the number of disk pages that fit in the available memory ism = M/B.
Notice that we treat bothB andM (orm) as important problem parameters in our asymptotic
performance bounds. They are not considered “just constants” which we can ignore.

2 Main-Memory Merge Sort

Before considering algorithms for external-memory sorting, we look at the merge-sort algo-
rithm for main-memory sorting. Some ideas from this algorithm are useful when considering
external-memory sorting (see Section 2 of [1] for more details).

The main component of the MERGE-SORT algorithm is the MERGE procedure, which
takes two sorted arrays as input and merges them into one sorted array.

The MERGE procedure repeatedly compares the smallest remaining element from one
input array with the smallest remaining element from the other input array. It then moves

1

the smallest of the two elements to the output array and repeats, until one of the input arrays
becomes empty. At the end, all the remaining elements from the non-empty array are moved
to the output array. Figure 1 illustrates the merging of two sorted arrays, each storing four
integers. At each step of the algorithm, the smallest elements in the two arrays that are
compared are shown in bold.

Operation Array 1 Array 2 Output

compare1 < 3 1, 4, 6, 7 3, 5, 8, 9
compare3 < 4 4, 6, 7 3, 5, 8, 9 1
compare4 < 5 4, 6, 7 5, 8, 9 1, 3
compare5 < 6 6, 7 5, 8, 9 1, 3, 4
compare6 < 8 6, 7 8, 9 1, 3, 4, 5
compare7 < 8 7 8, 9 1, 3, 4, 5, 6
copy array 2 to output 8, 9 1, 3, 4, 5, 6, 7
end 1, 3, 4, 5, 6, 7, 8, 9

Figure 1: Merging two sorted arrays into one

Once we have the MERGEprocedure, the MERGE-SORT algorithm is very simple. Here,
it is assumed that MERGE(A,A1, A2) merges arraysA1 andA2 into arrayA.

MERGE-SORT(A)
1 if A contains more than one element
2 Copy the first half ofA into arrayA1, and the second half ofA into arrayA2
3 MERGE-SORT(A1)
4 MERGE-SORT(A2)
5 MERGE(A,A1, A2)

As explained in [1], the running time of this algorithm isΘ(n log2 n), which is asymp-
totically optimal for the comparison-based main memory sorting.

3 External-Memory Merge Sort

If we “unwind” the recursion, the MERGE-SORT algorithm works by first merging pairs of
“sub-arrays” of 1 element into sorted sub-arrays of 2 elements, then merging pairs of sorted
sub-arrays of 2 elements into sorted sub-arrays of 4 elements, and so on. Let us call a sorted
sub-array of elements arun. Then, in each step the number of runs decreases twofold and
the algorithm stops when only one run remains.

We can use the same procedure for external-memory sorting, but instead of starting with
trivial runs of 1 element, we start with runs of sizeM (the available main memory). Let us
assume thatX points to a file that stores the input data which has to be sorted andY points
to an empty file. Theexternal-memory merge-sort algorithm has these two main phases:

• Phase 1 (produce initial runs): Repeat the following process until the end of fileX is
reached:

1. Read the nextM elements from fileX into main memory.

2. Sort them in main memory using any main-memory sorting algorithm.

2

3. Write the sorted elements at the end of fileY .

At the end of this phase, we have, in fileY , ⌈N/M⌉ runs ofM elements (the last run
may be shorter).

• Phase 2 (merge runs): Repeat the following while there is more than one run in fileY :

1. Make fileX empty.

2. Repeat the following until the end of fileY is reached: call TWOWAY-MERGE to
merge the next two runs from fileY into one run, which is written at the end of
file X. If only one run remains inY , just copy it at the end of fileX.

3. Exchange pointersX andY : make newX point to fileY and newY to file X.

At the end of this algorithm the sorted sequence of elements is in fileY .
Phase 2 of the algorithm works in essentially the same way as the the main-memory

merge sort, except that main-memory MERGEalgorithm can not be used to merge two runs of
M or more elements stored in external memory. Instead we use a TWOWAY-MERGE(X,Y, l, q, r)
algorithm, which merges the first run consisting of pagesl throughq−1 from file Y with the
second run consisting of pagesq throughr − 1 from file Y . The merged output is appended
to file X.

The TWOWAY-MERGE algorithm maintains three main-memory arrays of sizeB (i.e.,
storing one disk page each). The first two arraysBf1 andBf2 are buffers for disk pages read
from the first and the second runs. The third array is an outputbuffer. The algorithm works
exactly as the main-memory MERGE, merging buffersBf1 andBf2 into bufferBfo. If the end
of Bf1 or Bf2 is reached, the next page from the corresponding run is read into main memory.
Also, as soon asBfo becomes full it is flushed to the end of fileX. Figure 2 visualizes the
merging of main memory buffer pages.

Bf1

p1

p2

Bf2

Select smallest of
Bf1[p1] and Bf2[p2]

po

Bfo

Figure 2: Main-memory organization for two-way merging

In the pseudocode of TWOWAY-MERGE, which is on the next page, we assume that
DiskRead(Bf , Y , k) reads thek-th page of fileY into main-memory arrayBf . Similarly,
DiskWrite(Bfo, X) appends the contents of main-memory arrayBfo to the end of fileX.

The described external-memory merge-sort algorithm can sort a file of any size. Let us
analyze its running time, i.e., count the number of I/O operations it performs.

Phase 1 of the algorithm just reads all the pages from fileX and writes the same amount
of pages to fileY . Thus2n = Θ(n) I/O operations are performed (remember thatn is the
number of disk pages in the initial file).

In one iteration of the main loop of phase 2, disk pages of all runs in fileY are read
once and the same amount of pages is written to fileX. Again 2n = Θ(n) I/O operations
are performed. How many loop iterations are there in phase 2?Each iteration reduces the
number of runs twofold. We start with⌈N/M⌉ = ⌈n/m⌉ runs and finish with one run. Thus,
there arelog2(n/m) loop iterations each doingΘ(n) I/O operations.

3

TWOWAY-MERGE(X,Y, l, q, r)
1 r1← l ⊲ pointer to a page in run 1
2 r2← q ⊲ pointer to a page in run 2
3 DiskRead(Bf1, Y , r1) ⊲ buffer page for run 1
4 DiskRead(Bf2, Y , r2) ⊲ buffer page for run 2
5 p1← 1 ⊲ pointer to an element inBf1
6 p2← 1 ⊲ pointer to an element inBf2
7 po← 1 ⊲ pointer to an element inBfo
8 while r1 < q and r2 < r
9 if Bf1[p1] < Bf2[p2]
10 Bfo[po]← Bf1[p1]
11 p1← p1 + 1
12 if p1 > B ⊲ need a new page from run 1
13 r1← r1 + 1
14 if r1 < q ⊲ if not the end of run 1
15 DiskRead(Bf1, Y , r1)
16 p1← 1
17 else ⊲ Bf1[p1] ≥ Bf2[p2]
18 Bfo[po]← Bf2[p2]
19 p2← p2 + 1
20 if p2 > B ⊲ need a new page from run 2
21 r2← r2 + 1
22 if r2 < r ⊲ if not the end of run 2
23 DiskRead(Bf2, Y , r2)
24 p2← 1
25 po← po + 1
26 if po > B ⊲ output buffer pageBfo is full
27 DiskWrite(Bfo, X)
28 po← 1
29 if r1 = q
30 Copy elementsBf2[p2], . . . , Bf2[B] to Bfo, write Bfo to disk (fileX), and copy

the remaining pages of run 2 (fromr2 + 1 to r − 1) to the end ofX.
31 else ⊲ r2 = r
32 Do the same forBf1 and run 1.

Summing up the costs of phase 1 and phase 2 we get the total running time of
Θ(n log2(n/m)). It turns out, this is not the best we can do.

How can we make the algorithm more efficient? The important observation is that, while
we use all the available main-memory in phase 1, we use only 3 out of m available pages
of main-memory in phase 2. It is easy to see that allocating larger buffersBf1, Bf2 andBfo
does not change the number of performed I/O operations (although it reduces the number of
random I/O operations—see the last section). Instead, as the next section explains, we need
to merge not two but more runs at the same time.

4

4 Two-Phase, Multiway Merge Sort

Thetwo-phase, multiway merge-sort algorithm is similar to the external-memory merge-sort
algorithm presented in the previous section. Phase 1 is the same, but, in phase 2, the main
loop is performed only once merging all⌈N/M⌉ runs into one run in one go. To achieve
this, multiway merging is performed instead of using the TWOWAY-MERGE algorithm.

The idea of multiway merging is the same as for the two-way merging, but instead of
having 2 input buffers (Bf1 andBf2) of B elements, we have⌈N/M⌉ input buffers, eachB
elements long. Each buffer corresponds to one unfinished (oractive) run. Initially, all runs
are active. Each buffer has a pointer to the first unchosen element in that buffer (analogous
to p1 andp2 in TWOWAY-MERGE).

The multiway merging is performed by repeating these steps:

1. Find the smallest element among the unchosen elements of all the input buffers. Linear
search is sufficient, but if the CPU cost is also important, minimum priority queue can
be used to store pointers to all the unchosen elements in input buffers. In such a case,
finding the smallest element is logarithmic in the number of the active runs.

2. Move the smallest element to the first available position of the output buffer.

3. If the output buffer is full, write it to the disk and reinitialize the buffer to hold the next
output page.

4. If the buffer, from which the smallest element was just taken is now exhausted of
elements, read the next page from the corresponding run. If no pages remain in that
run, consider the run finished (no longer active).

When only one active run remains the algorithm finishes up as shown in lines 30 and 32
of TWOWAY-MERGE—it just copies all the remaining elements to the end of fileX.

Figure 3 visualizes multiway merging.

Input buffers,
one for each
unfinished run

po

Bfo
.

Pointers to first
unchosen elements

Select smallest
unchosen element
for output

Figure 3: Main-memory organization for multiway merging

It is easy to see that phase 2 of the two-phase, multiway merge-sort algorithm performs
only Θ(n) I/O operations and this is also the running time of the whole algorithm. In spite
of this, the algorithm has a limitation—it can not sort very large files.

If phase 1 of the algorithm produces more thanm − 1 runs (N/M > m − 1), all runs
can not be merged in one go in phase 2, because each run requires a one-page input buffer
in main-memory and one page of main-memory is reserved for the output buffer. How large
should the file be for this to happen?

5

Consider a computer with 256Mb of available main-memory andthe disk page size of
8Kb. If the sorted elements are four-byte integers,M = 226 andB = 211. Then,

N

M
> m− 1 ⇒ N > M

(

M

B
− 1

)

=
M2

B
−M ≈ 241.

The file of241 four-byte integers occupies 8 terabytes. Thus, two-phase,multiway merge
sort will work for most of the practical file sizes.

5 Multiway Merge Sort of Very Large Files

Sometimes there may be a need to sort extremely large files or there is only a small amount
of available main memory. As described in the previous section, two-phase, multiway merge
sort may not work in such situations.

A natural way to extend the two-phase, multiway merge sort for files of any size is to
do not one but many iterations in phase 2 of the algorithm. That is, we employ the external-
memory merge-sort algorithm from Section 3, but instead of using TWOWAY-MERGE, we
use the multiway merging (as described in the previous section) to mergem − 1 runs from
file Y into one run in fileX. Then, in each iteration of the main loop of phase 2, we reduce
the number of runs by a factor ofm− 1.

What is the running time of this algorithm, which we call simply multiway merge sort.
Phase 1 and each iteration of the main loop of phase 2 takesΘ(n) I/O operations. After
phase 1, we start up with⌈N/M⌉ = ⌈n/m⌉ runs, each iteration of the main loop of phase
2 reduces the number of runs by a factor ofm − 1, and we stop when we have just one
run. Thus, there arelog

m−1(n/m) iterations of the main loop of phase 2. Therefore, the
total running time of the algorithm isΘ(n log

m−1(n/m)) = Θ(n log
m

n − n log
m

m) =
Θ(n log

m
n− n) = Θ(n log

m
n).

Remember that the cost of the external-memory merge-sort algorithm from Section 3 is

Θ(n log2(n/m)). Thus, multiway merge sort is faster by a factor ofΘ
((

1− 1
log

m
n

)

log2 m
)

.

Actually, Θ(n log
m

n) is a lower bound for the problem of external-memory sorting.That
is, multiway merge sort is an asymptotically optimal algorithm.

6 Sequential vs. Random I/O

In all the analysis of the previous sections, we did not distinguish between the sequential and
random access of disk pages. If sequential access is much faster than random, then it may
be wise to minimize the number of random I/O operations, evenif the total number of I/O
operations increases.

Let us look at the multiway merge-sort algorithm and let us assume that filesX and
Y consist of a sequence of sequential disk pages. While almostall the I/O operations in
phase 1 access sequential disk pages, most of the I/O operations in phase 2 are random.
To increase the number of sequential disk accesses, we can slightly modify the multiway
merging procedure by increasing the sizes of the input buffers and the output buffer from one
disk page to a larger number of disk pages. Whenever an input buffer is exhausted during
multiway merging, instead of doing one random disk-read operation, we do one random
and a number of sequential disk-read operations. If the number of runs after phase 1 is
much smaller thanm − 1, we can do this even without increasing the total number of I/O

6

operations. (Exercise: think why this is true. How much can we icrease the size of the input
buffers without increasing the total number of I/O operations?).

References

[1] Th. H. Cormen, Ch. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms.
2nd edition, MIT Press (2001)

[2] D. E. Knuth.The Art of Computer Programming: Volume 3 (Sorting and Searching).
2nd edition, Addison-Wesley (1998)

[3] H. Garcia-Molina, J. D. Ullman, and J. Widom.Database Systems: The complete Book.
International edition, Prentice Hall (2002).

7

