

Adaptive Utility Elicitation with Minimax Regret

Paolo Viappiani Department of Computer Science University of Toronto

> Ecole Centrale Paris (ECP) March, 22, 2010

The Preference Elicitation Problem

- Al agents act on behalf of the user
- Specific user needs and preferences
 - Quality of these services are only as good as the user model
 - BUT user model is expensive to acquire
 - Only partial utility/preference information is available
 - Optimization with uncertain objective function

[Viappiani, AI Magazine 2008]

Preference-based Search

Product configuration

Large collection of outcomes

• Users are not familiar with available items and features

• Users do not know their preferences: theory of preference construction [Payne]

• Biases in decision: framing, prominence, means-objectives [Gilovich, Kahneman]

Biases in Decision Making

Example: system asks about preferred airline first

- •Real preference about price:
 - Believe 'swiss' to be cheap \rightarrow User answer 'Swiss is preferred'
 - Return an very expensive flight!
- Airline=Swiss is a *means-objective*

Aer Lingus 🞤	Total f	Fare per person: 635 CHF (exd. taxes and fees) Total for all passengers: 704 CHF (incl. taxes and fees)			
Depart	Arrival	Duration			
Geneva [GVA] 10 Jul 15:30	Dublin [DUB] 10 Jul 16:40	02h 10m / non stop Economy			
Dublin [DUB] 12 Jul 11:45	Geneva [GVA] 12 Jul 14:50	02h 05m / non stop Economy			
		Book this flight			

Mixed initiative Interfaces

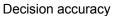
Example-critiquing

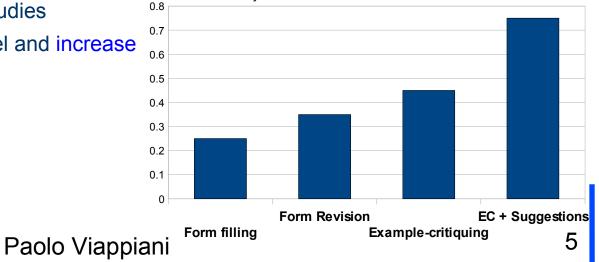
- Flexibility in product navigation
- Prevent behavioral biases
- Adaptive Strategies of Suggestions

[Viappiani, Faltings, Pu, JAIR 2006]

- Bayesian learning
- Stimulate expression of correct preference
- Avoid framing
- Evaluated with User Studies
- Better preference model and increase decision accuracy

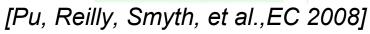
											Help on	the interface Help	o on the attr
Pref	erence	s <u>E</u>	xpand			You	have set p	referenci	es on:	orice			
Res	ults <u>Co</u>	llap	se										
					Thes	e are the b	est examp	les acco	ding to	your prefe	rences		
ID	price	size	type	smoking	furni	shed trans	sportation	bathroo	m kitcl	nen distan	iceToUni di	stanceToCentre	
128	300	1	room in a house	either smoking/no smoking	furni	shed	bus	shared	i sha	ed	9	8	0
121	300	1	room in a house	no smoking	furni	shed	bus	private	sha	ed	10	12	0
139	300	1	room in a house	either smoking/no smoking	furni	shed	bus	shared	i sha	ed	22	9	0
				~									Add to bas
					The	suggestion	s can help	you con	sider of	her opporte	unities		
ID	price	size	type	smoki	ng	furnished	transport	tation ba	throon	kitchen o	distanceTol	Jni distanceToC	entre
59	550	1	room in house		o/no	fumished	metr	0	shared	shared	6	9	
80	320	1	room ir house		g/no	furnished	trair	1 :	shared	private	32	32	
170	489	1	apartme	eithe ent smokini smoki	o/no	not fumished	bus		orivate	private	7	5	





Critiquing Interfaces

- Despite all the advantages they...
 - Do not provide utility guarantees
 - User might be locked in a *local optimum*
 - Lack support for trade-offs



[McTorrens, Pu, Faltings, Comp₆ Int. 2004]

Recommendations with an Explicit Utility Model

Associate user's actions with a precise, sound semantics

- E.g. critique impose linear constraints on a user utility function
- Advantages of our approach
 - Suggest a set of products
 - Bound the difference in quality of the recommendation and the optimal option of the user
 - Determine which options and critiques carry the most information
 - Suggest when *terminate* the process
- We adopt the notion of *minimax regret* to face utility uncertainty
 - Extend it to the case of a set of *joint* recommendations

Structure of the Talk

- **1. Minimax Regret**
- 2. Optimal Recommendation Set
- 3. Feature Elicitation

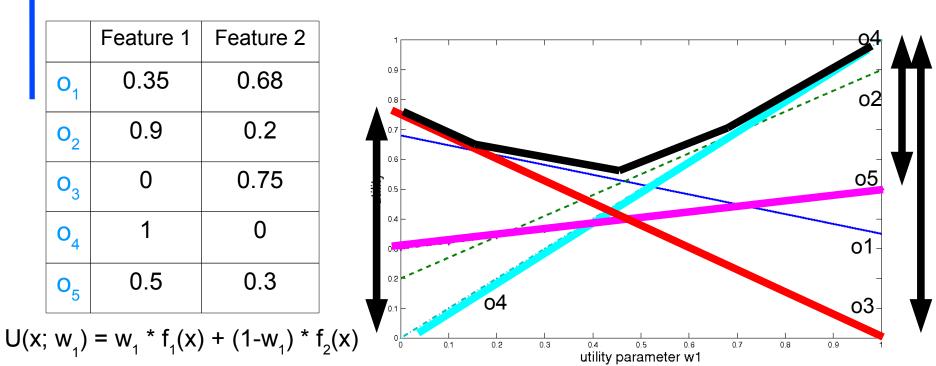
Utility Model

- Finite set of *decisions* X
 - Feasible set **X** defined by constraints, product DB, etc.
- Utility representation critical to assessment
- *u*(*x*; *w*) parametrized compactly
 - Vector w encodes the utility functions
 - Linear: $u(x; w) = w \cdot x$
 - Others: linear/additive, generalized additive models

Minimax Regret definition

- W = set of feasible utilility parameters
- X= set of products
- x = recommendation
- Max regret MR(x; W) = $\max_{y \in X} \max_{w \in W} u(y; w) - u(x; w)$
- ■Minimax regret and minimax regret optimal x*_w :

 $\begin{array}{ll} \mathsf{MMR}(\mathsf{W}\) = \min \,\mathsf{MR}(\mathsf{x},\,\mathsf{W}\) & \mathsf{x^*}_{\mathsf{W}} \ = \text{argmin}\,\mathsf{MR}(\mathsf{x},\,\mathsf{W}\) \\ & \mathsf{x}{\in}\mathsf{X} & \mathsf{x}{\in}\mathsf{X} \end{array}$



 W_1 unknown

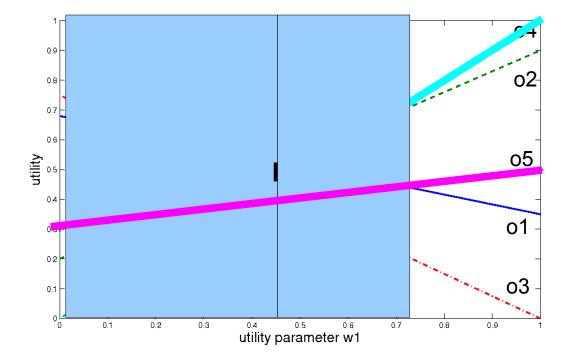
	Adversary	MR
O ₁	0 ₄	0.65
0 ₂	O ₃	0.55
O ₃	0 ₄	1
0 ₄	O ₃	0.75
O ₅	0 ₄	0.5

o₅ minimax **regret optimal**

Regret-based recommender

W set of feasible utility functions

- 1) Initialize *W* with initial constraints
- 2) DO Generate current recommendations
- 3) Refine *W* given user's feedback
- 4) LOOP until user stopsOR regret < ξ



Initial minimax regret = 0.5

User: o2 better than o1 \rightarrow regret = 0.07

User: o4 better than o2 \rightarrow regret = 0

Minimax Regret Computation

Minimax regret can be formulated as a MIP

•Benders' decomposition + constraint generation techniques

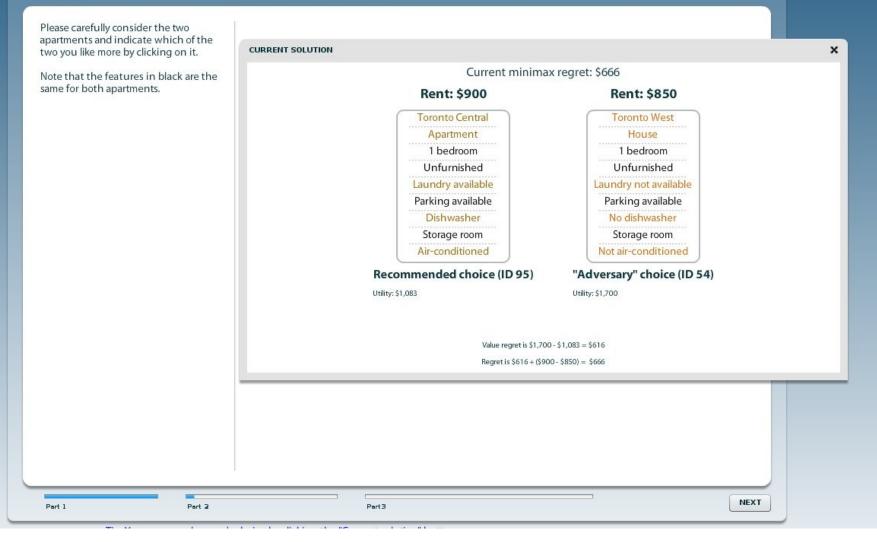
$$\begin{split} \min_{x,R} \max_{y,w} u(y_w^* w) \psi &\to u(u(x,w) \psi); \quad x_w^* = \arg \max_{x \in X} u(x;w) \\ s.t. \ R > u(x_w^*;w) - u(x;w) \quad \forall w \in Wert(W) \\ \min_{xx,R} R \\ stt. \ R \gg u(x_w^{**};w) x - u(w; \oplus) GE \forall w \in GEN \subset Vert(W) \end{split}$$

Max Regret Computation

- Can be encoded as a MIP for a variety of utility models (additive, GAI) and configuration problems
- Can be computed with a sequence of LP for database problems

Show map

QUESTIONS



UTPREF [Braziunas]

Structure of the Talk

- 1. Minimax Regret
- 2. Optimal Recommendation Set
- 3. Feature Elicitation

[work with Craig Boutilier]

Recommendations Sets

Show products that are both

- Expected to be rated highly
- Maximally informative should we have feedback
- This work: optimal recommendation set given a sound decisiontheoretic semantics of the user interaction

The value of a *set* is dependent on the elements of the set *jointly*. We assume:

$$-Utility(\begin{pmatrix} A \\ B \\ C \end{pmatrix}) = max \left\{ \begin{array}{c} U(A) \\ U(B) \\ U(C) \end{array} \right\}$$

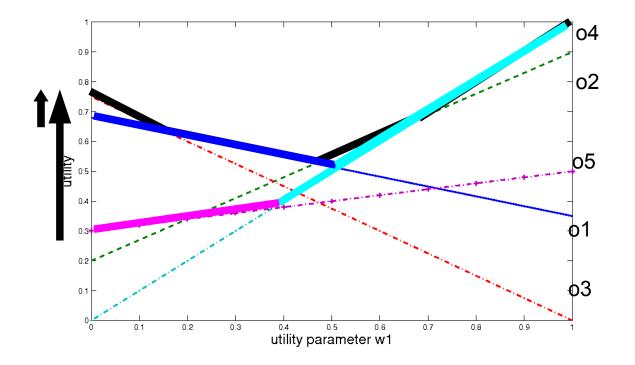
A recommendation set gives "shortlisted" alternativesReasonable in practice: apartment search example

Regret \rightarrow **Setwise Regret**

- We chooses the set of k options first, but *delay* the final choice from the slate after the adversary has chosen a utility function w in W
- Minimum difference btw options in the slate and (real) best option
- The setwise max regret SMR(Z; W) of a set Z:

$$SMR(Z; W) = \max_{y \in X} \max_{w \in W} \max_{x \in Z} u(y; w) - u(x; w)$$

The setwise minimax regret SMMR(W) and the optimal set Z^*_{W} :
$$SMMR(W) = \min SMR(Z, W)$$
$$Z^*_{W} = \operatorname{argmin} SMR(Z, W)$$
$$Z^*_{W} = \operatorname{argmin} SMR(Z, W)$$

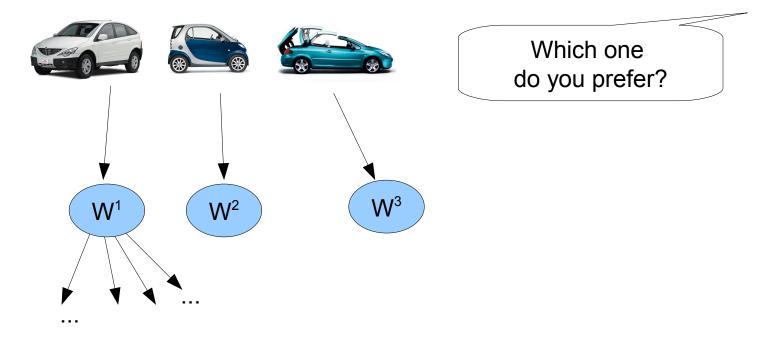


Set	Adversary	W ₁	SMR
$\{0_1,0_4\}$	0 ₃	0	0.07
$\{0_1,0_2\}$	0 ₃	1	0.1
$\{0_3,0_2\}$	0 ₄	1	0.1
$\{0_3,0_4\}$	0 ₃	0.42	0.11
$\{0_5,0_4\}$	0 ₄	0	0.45

{o₁, o₄} setwise minimax regret optimal

Incorporating User Feedback

Slate Z of k options viewed as a "query set" - user picks one



Worst-case Regret (wrt each possible answer) WR(Z) = max [MMR(W¹), MMR(W²), ..]

Two objectives

■ *Minimize SMR*: recommendation set with lowest loss

Minimize WR: query set with greater regret reduction after user answer (wrt worst-case)

Straight minimization of WR is hard

■Relation between SMR and WR ?

Theorem

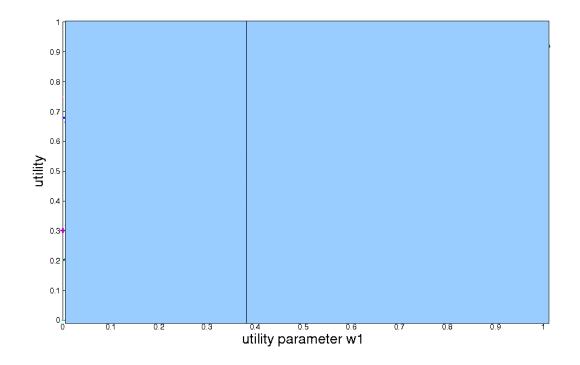
- The optimal recommendation set Z*_w is also the (myopically) optimal query set wrt worst-case regret (WR)
 → "Best recommendation set = best query set"
- The optimal query set can be chosen without enumeration
 - We can compute setwise regret efficiently
 - Setwise minimax regret can be formulated as a MIP
 - Benders' decomposition + constraint generation techniques
 - Approximation techniques

Hillclimbing procedure

"minimax-regret rewriting"

- Given a set $Z = \{x^1, ..., x^k\}$ **DO**
 - Partition the utility space
 - X^1 option preferred \rightarrow new space $W^{Z \rightarrow 1}$
 - •...
 - $\bullet X^k \text{ option preferred} \to new \\ \text{ space } W^{Z \to k} \\$
 - Replace xⁱ with x*_wi, the MMR-optimal in Wⁱ
- WHILE SMR(Z^{new}) < SMR(Z)

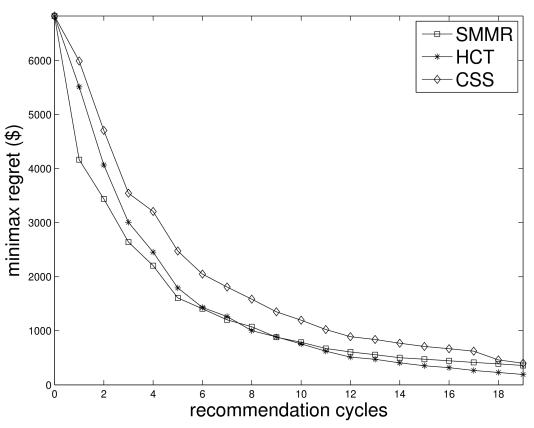
The inner replacement can be proved not to increase SMR



- Start with {o₅, o₄}
- Assume o₄ better than o₅
 - Compute MMR: this gives o₂
- Assume o₅ better than o₄
 - Compute MMR: this gives o₁
- New query {0₁, 0₂}

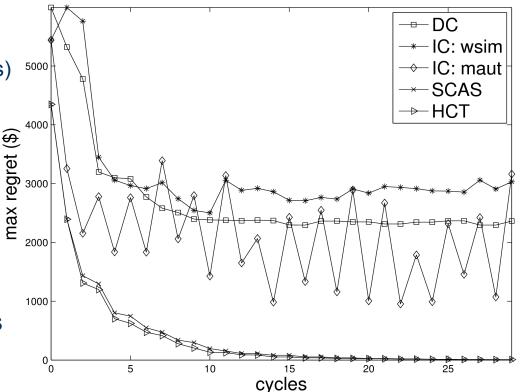
Empirical Results

- Randomly generated quasilinear utility functions
- Real dataset (~200 options)
- User iteratively picks preferred option in a pair (k=2)
- Measure regret reduction
- SMMR recommendations are significantly better than CSS
- Hillclimbing (HCT) is as good as SMMR



Critiquing Simulation

- Simulate a critiquing session
 - Quasilinear utility model
 - Synthetic dataset (5000 options) 5
- "Optimizing" user chooses best critique wrt real utility
- Alternate btw
 - Selection of feature to improve ('unit critique')
 - Selection among a set of 3 suggestions
- HCT-based set recommendations gives best regret reduction



Real Loss

Real loss (regret) is the difference 0.7 --- DC to the actual optimum -----IC: wsim \rightarrow IC: maut 0.6 Set size k=3 → SCAS --->--HCT Regret-based recommender give 0.5 optimal recommendation in very real regret few cycles 0.2 0.1 0 10 15 20 25 5 recommendation cycles

Structure of the Talk

- 1. Minimax Regret
- 2. Optimal Recommendation Set
- **3. Feature Elicitation**

[work with Craig Boutilier and Kevin Regan]

Subjective Features

Preference elicitation usually focuses on "catalog" attributes (or product specifications)

• Engine, size, color, fuel economy; number of bedrooms,...

■We consider "user-defined" *subjective* features

- Constructed on the fly
- Application to critiquing interfaces (eg Findme)
- User can focus on *fundamental objectives* [Keeney]

Subjective Features

■SAFE CAR

CrashTestRatings > Good AND easy to park

Feature Elicitation

Feature elicitation vs. classical concept learning

- Learn just enough about a concept in order to make a good decision
- Reward model + feasibility constraints → near optimal recommendation with weak concept knowledge
- Minimize user queries

Example: preference for *sporty* cars, BUT luggage capacity more important.

If all "sporty cars" have small luggage capacity, it is not worth continuing to learn more about *sporty*!

Abstract Model for Feature Elicitation

Product space $X \subseteq Dom\{X_1 \dots X_n\}$

- Reward *r*(**X**) reflects utility for catalog features
- Concept *c*(**X**) drawn from some hypothesis space *H*
- Bonus *p*: additional utility for an *x* satisfying *c*(*x*)
- Utility $u(\mathbf{x}; \mathbf{c}) = r(\mathbf{x}) + p c(\mathbf{x})$
- Goal: recommend products with highest utility

■Version space V

 Subset of H that is consistent with the current knowledge about the concept

Minimax Regret over Concepts

Let $V \subseteq H$ be current version space

- • $c \in V$ iff c respects prior knowledge, responses, etc.
- The adversary chooses concept and witness **x**^w

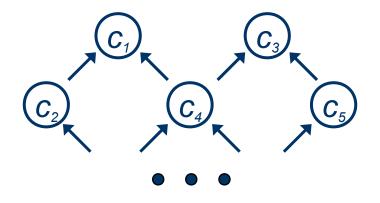
$$MR(\mathbf{x}; V) = \max_{c \in V} \max_{\mathbf{x}' \in \mathbf{X}} u(\mathbf{x}'; c) - u(\mathbf{x}; c)$$
$$MMR(V) = \min_{\mathbf{x} \in \mathbf{X}} MR(\mathbf{x}, V)$$
$$\mathbf{x}_{V}^{*} = \arg\min_{\mathbf{x} \in \mathbf{X}} MR(\mathbf{x}, V)$$

If $MMR(V) = \varepsilon$, \mathbf{x}^* is ε -optimal.

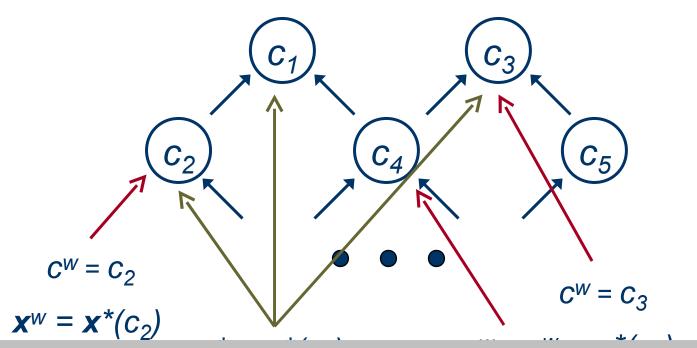
Characterizing MMR-Optimal Soln

■MMR-optimal soln *x**, *x*^{*w*}, *c*^{*w*}: interesting structure

- General-specific lattice > over V: c > c' iff $c' \subseteq c$
- Best **x** satisfying *c*: *r**(*c*) = max { *r*(**x**) : **x**∈*c*, **x**∈**X**}
- Induces reward-ordering over V: $r^*(c_1) > r^*(c_2) > \dots$
- Reward ordering respects GS ordering



Characterizing MMR-Optimal Soln



PROPOSITION

x* is either the product with highest reward OR

1) There is a concept in the version space V that satisfies it 2) x* in argmax{ $r(\mathbf{x}) : \mathbf{x}$ in $C_1 \cap .. \cap C_i$ } for some i≥1 3) either c^w in C_1 , or c^w in C_{i+1}

Computing MMR: Conjunctions

■MMR encoded MIP

- Details and formulation depend on the hypothesis space
- Various encoding tricks to encode concept satisfaction
- Special case: conjunctions, memberships queries
 e.g., "Do you consider this to be a safe car?"

$$\min \delta$$

s.t.
$$\delta \ge r(\mathbf{x}_c) - r(X_1, \cdots, X_n) + p(\mathbf{x}_c, c) - pI^c \quad \forall c \in V$$

 $I^c \le X_j \quad \forall c \in V, \forall x_j \in c$
 $I^c \le 1 - X_j \quad \forall c \in V, \forall \overline{x}_j \in c$

 $\mathbf{x}_{c} = \arg \max_{\mathbf{x} \in \mathbf{X}} u(\mathbf{x}; c)$

Computing MMR: Conjunctions

■Maximization sub-problem

 \mathbf{S}

- •Find maximally violated constraint: concept that maximizes regret $MR(\mathbf{x}^*, V)$
- •Let E^+ , E^- be positive, negative instances

$$\max \quad r(X_1, \cdots, X_n) - r(\mathbf{x}) + pB^w - pB^x$$

s.t. $B^w + I(x_j) \leq X_j + 1.5 \quad \forall j \leq n$
 $B^w + I(\overline{x}_j) \leq (1 - X_j) + 1.5 \quad \forall j \leq n$
 $B^x \geq 1 - \sum_{j:\mathbf{x}[j] \text{ positive}} I(\overline{x}_j) - \sum_{j:\mathbf{x}[j] \text{ negative}} I(x_j)$
 $\sum_j I(\neg \mathbf{y}[j]) = 0 \quad \forall \mathbf{y} \in E^+$
 $\sum_j I(\neg \mathbf{y}[j]) \geq 1 \quad \forall \mathbf{y} \in E^-$
 $(X_1, \cdots, X_n) \in \mathbf{X}$

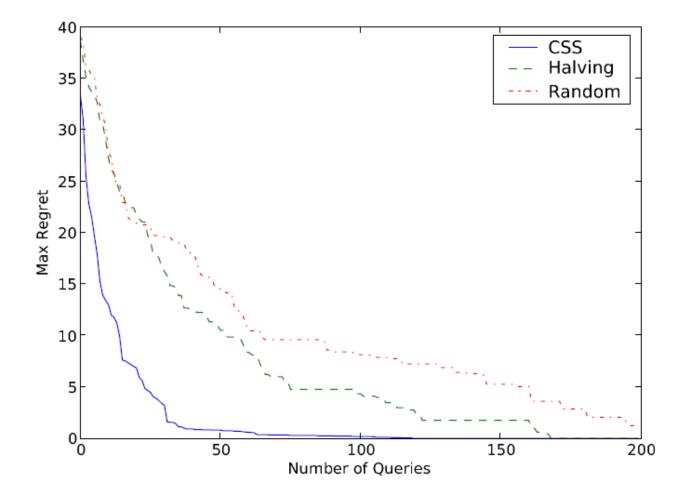
Query Strategies

Aim: reduce regret quickly

- Several strategies using membership queries:
 - 1. Halving: aims to learn concept directly
 - "random" query x until positive response; then refine (unique) most specific concept in V (negate one literal at a time)
 - 2. Current Solution (CS): tackle regret directly
 - If \mathbf{x}^* , \mathbf{x}^w both in $c^w \rightarrow$ query \mathbf{x}^w (unless certain)
 - If \mathbf{x}^w in c^w but not $\mathbf{x}^* \rightarrow$ query \mathbf{x}^* (unless certain)
 - If x^* , x^w both not in $c^w \rightarrow$ query x^w if x^w (unless certain)
 - 3. Several variants show modest improvements

Experimental Results

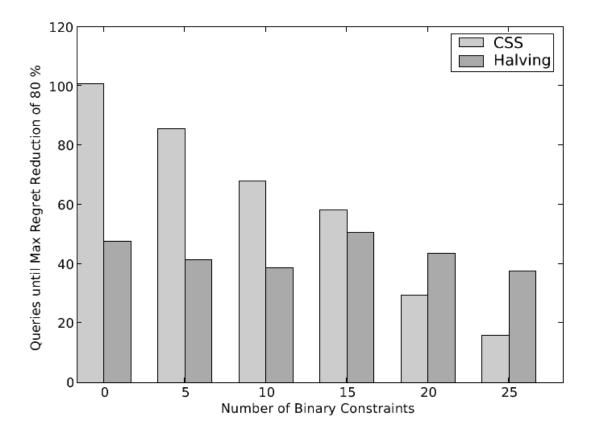
■30 variables, 20 random binary constraints, concepts have size 10, random reward/bonus, bonus = 25% of max reward



39

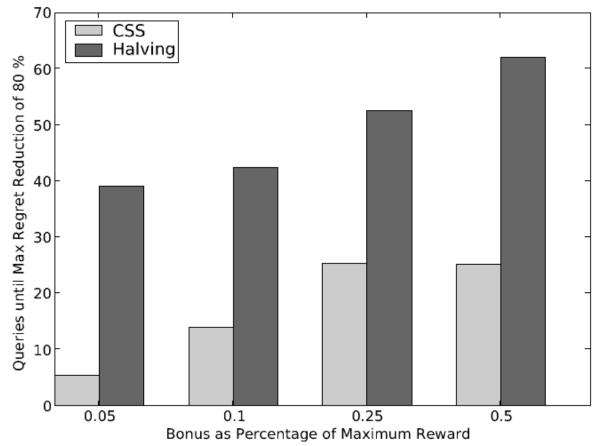
Varying Constraint Tightness

Tighter constraints: sparser solution sets, more variability in *r** values, more concepts in *V* without positive instances in *X*shown: number of queries to reach regret reduction of 80%



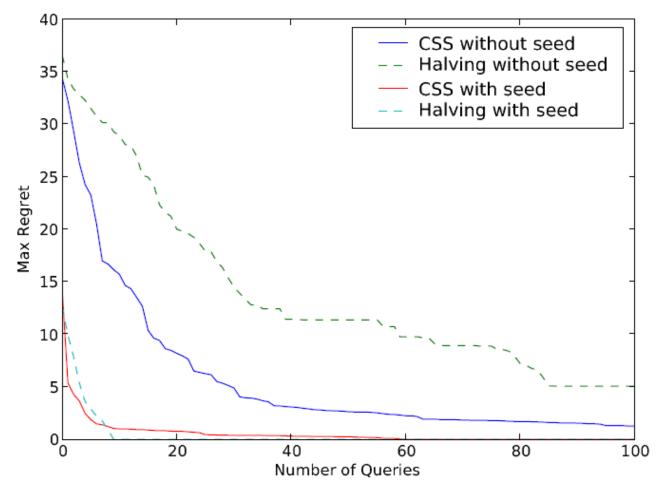
Varying Relative Bonus

Greater bonus value: refining the concept becomes more critical
 shown: queries to reach regret reduction of 80% (20 constraints)



Positive Instance as Seed

Once positive instance found, true "halving" kicks in•assume user identifies a positive example immediately



42

Feature + Utility Uncertainty

Utility u(x; w, c) function of unknown weights and feature

- Require simultaneous utility and feature elicitation
- Doing one "completely" followed by other is wasteful
- Query strategies: which type of query?
 - Interleaved strategies (I) asks membership query when 'reward' component of regret is higher
 - **Phased Strategies (Ph):** always ask membership when uncertain about concept
 - Combined comparison-membership query (CCM): asks both comparison and membership queries about x* and x^w

In general, counts as 3 queries

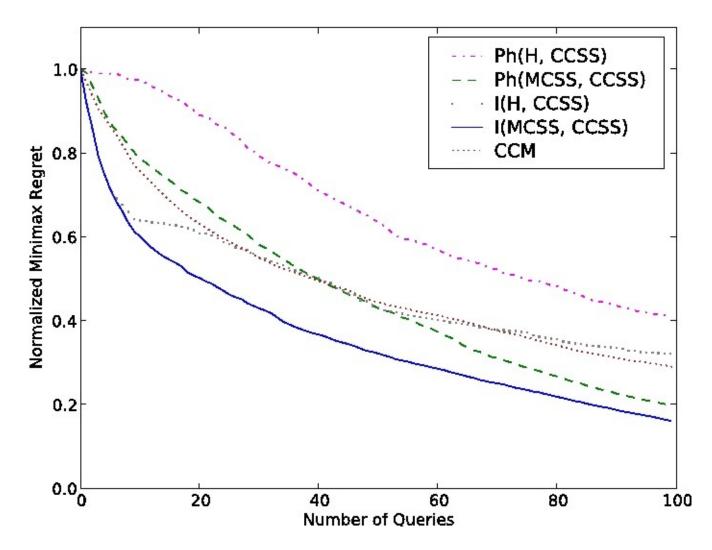
- Query strategies: what to ask?
 - Comparison query: CCSS
 - Membership query: MCSS vs Halving

Comparison Queries in Joint Model

■User prefers **x** to **y**

- no feature uncertainty: linear constraint wx > wy
- feature uncertainty, more complicated
 - ask membership: linear; e.g., wx + p > wy
 - unknown membership: conditional constraints
 - can be linearized in MIP

$$w\mathbf{x} - w\mathbf{y} > 0 \text{ if } c(\mathbf{x}), c(\mathbf{y})$$
$$w\mathbf{x} + p - w\mathbf{y} > 0 \text{ if } c(\mathbf{x}), \neg c(\mathbf{y})$$
$$w\mathbf{x} - w\mathbf{y} - p > 0 \text{ if } \neg c(\mathbf{x}), c(\mathbf{y})$$
$$w\mathbf{x} - w\mathbf{y} > 0 \text{ if } \neg c(\mathbf{x}), \neg c(\mathbf{y})$$



Interleaved elicitation strategies are better off than *phased* strategies (large problem size, 30 attributes)

Summary

- Minimax regret optimization for recommendation and utility elicitation
- Formalization of recommendations of a joint set of alternatives
 - We proposed a new criterion setwise regret
 - Intuitive extension of regret criterion
 - Guarantee on the quality of the recommendation set
 - Efficient driver for further elicitation
- Optimal recommendations sets = optimal query sets
 - Computation & heuristics
- Subjective Features
 - Minimax regret formulation over concept
 - Interleaved elicitation of utility and features

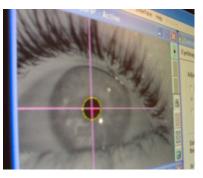
Future works

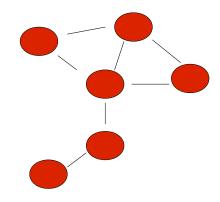
Contextual preference assessment

- Technologies like *eye/gaze tracking* (much less expensive than in the past!)
- Challenges:
 - Effective learning algorithms to identify user context, and
 - Provide situated responses

Social Networks

- Optimize diffusion
- Leverage similarities between nodes
- Bayesian Approaches
- Noisy models
- Applications: ranking, computational advertisement, planning systems Paolo Viappiani





Why Minimax Regret?

- Minimizes regret in presence of adversary
 - provides bound worst-case loss (cf. maximin)
 - robustness in the face of utility function uncertainty
 - •We extend it to concept uncertainty
- In contrast to Bayesian methods:
 - •useful when priors not readily available
 - •can be more tractable; see [CKP00/02, Bou02]
 - •user unwilling to "leave money on the table" [BSS04]
 - •preference aggregation settings [BSS04]
 - •effective elicitation even *if* priors available [WB03]

Constraint Generation

Constraint generation: avoid enumeration of V

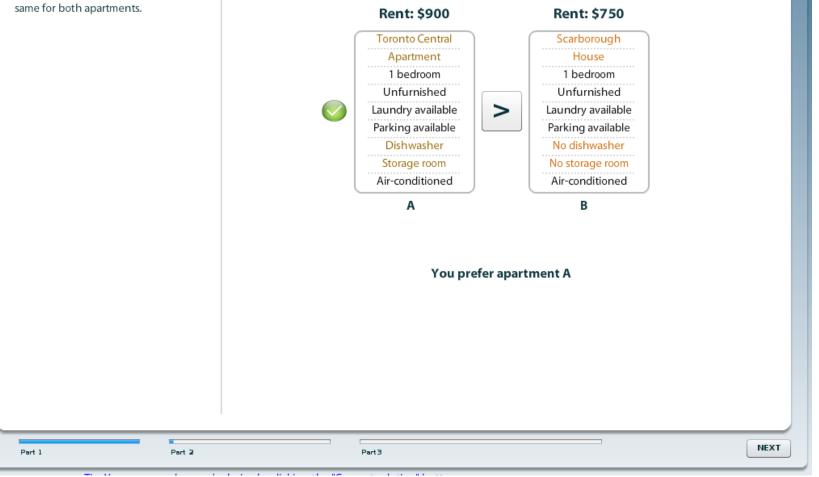
- REPEAT
- Solve minimization problem with a subset *GEN* of *V*
 - The adversary's hands are tied to choose a couple (w, y) from this subset
 - LB of minimax regret
- Find max violated constraint computing MR(x)
 - UB of minimax regret
- Add the adversarial choice to GEN
- Terminate **WHEN** UB = LB

Show map

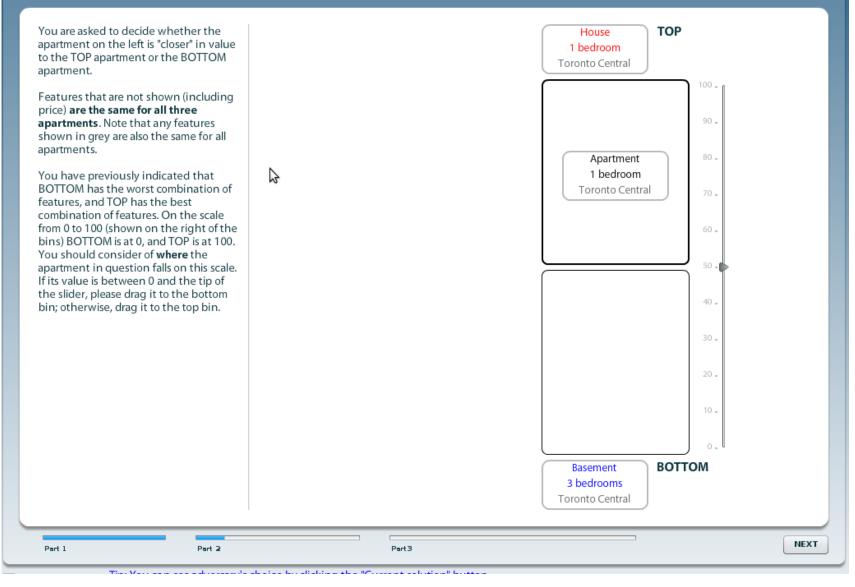
QUESTIONS

Please carefully consider the two apartments and indicate which of the two you like more by clicking on it.

Note that the features in black are the same for both apartments.



QUESTIONS



Setwise Regret Computation

Setwise minimax regret can be formulated as a MIP

Benders' decomposition + constraint generation techniques

$$\min_{M, I_w^j, \mathbf{X}^j, V_w^j} M$$
s.t. $M \ge \sum_{1 \le j \le k} V_{\mathbf{w}}^j \quad \forall \mathbf{w} \in Vert$

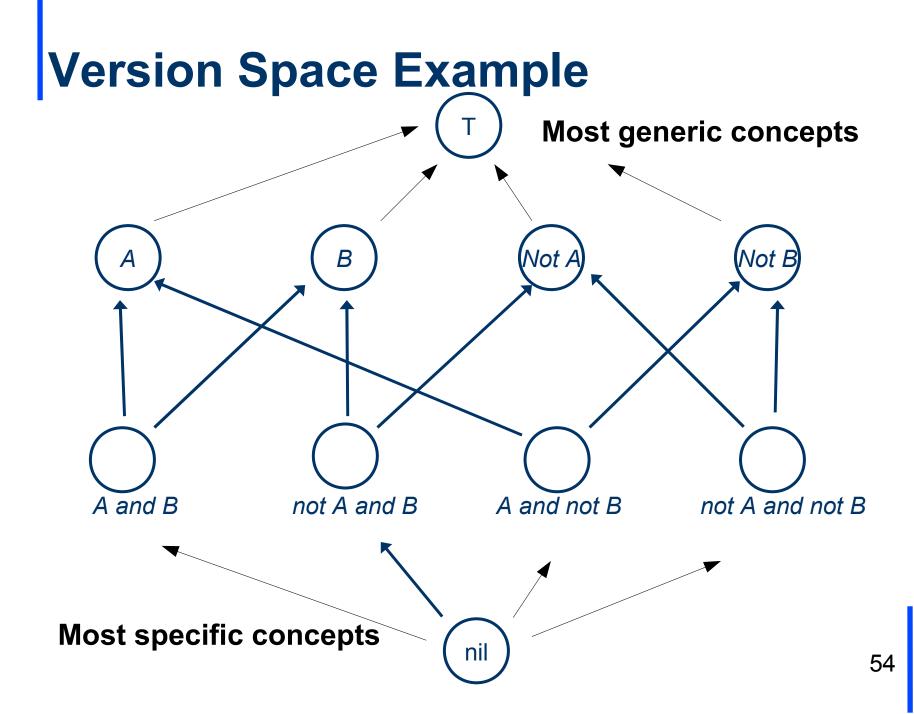
$$V_w^j \ge \mathbf{w} \cdot (\mathbf{x}_{\mathbf{w}}^* - \mathbf{X}^j) + (I_w^j - 1)m_{big}$$

$$\forall j \in [1, k] \land \quad \forall \mathbf{w} \in Vert$$

$$\sum_{1 \le j \le k} I_{\mathbf{w}}^j = 1 \quad \forall \mathbf{w} \in Vert$$

$$I_{\mathbf{w}}^j \in \{0, 1\}$$

$$V_{\mathbf{w}}^j \ge 0 \quad \forall j \in [1, k], \forall \mathbf{w} \in Vert$$



(Single Item) Minimax Regret Computation

Configuration problems

Benders' decomposition and constraint generation to break
 minimax program

Discrete datasets

- Adversarial search with two plys
- Heuristics:
- order to maximize pruning
 - Sample hypercube vectors

