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The Preference Elicitation Problem
 AI agents act on behalf of the user

 Specific user needs and preferences 
● Quality of these services are only as good as the user model 
● BUT user model is expensive to acquire
● Only partial utility/preference information is available
● Optimization with uncertain objective function

[Viappiani, AI Magazine 2008]
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Preference-based Search 

Cost? Two doors? 
Luggage Capacity ? 

Color ? Options?
Safe? 

 Product configuration

 Large collection of outcomes

● Users are not familiar with available 
items and features

● Users do not know their 
preferences: theory of preference 
construction [Payne]

● Biases in decision: framing, 
prominence, means-objectives 
[Gilovich, Kahneman]
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Biases in Decision Making
 Example: system asks about preferred airline first

●Real preference about price: 
■ Believe 'swiss' to be cheap → User answer 'Swiss is preferred'
■ Return an very expensive flight!

● Airline=Swiss is a means-objective
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Example-critiquing
● Flexibility in product navigation
● Prevent behavioral biases

 Adaptive Strategies of Suggestions
[Viappiani, Faltings, Pu, JAIR 2006] 

● Bayesian learning
● Stimulate expression of correct 

preference
● Avoid framing
● Evaluated with User Studies   
● Better preference model and increase 

decision accuracy 

Form filling
Form Revision

Example-critiquing
EC + Suggestions
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Critiquing Interfaces 

 Despite all the advantages 
they... 

●Do not provide utility 
guarantees

● User might be locked in a 
local optimum

● Lack support for trade-offs

[McTorrens, Pu, Faltings, Comp 
Int. 2004]

[Pu, Reilly, Smyth, et al.,EC 2008]
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Recommendations with an Explicit Utility Model

Associate user's actions with a precise, sound semantics
• E.g. critique impose linear constraints on a user utility function

Advantages of our approach
• Suggest a set of products
• Bound the difference in quality of the recommendation and the 

optimal option of the user
• Determine which options and critiques carry the most information
• Suggest when terminate the process

We adopt the notion of minimax regret to face utility uncertainty
• Extend it to the case of a set of joint recommendations
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Structure of the Talk

1. Minimax Regret
2. Optimal Recommendation Set
3. Feature Elicitation
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Utility Model

 Finite set of decisions X
• Feasible set X defined by constraints, product DB, etc.

 Utility representation critical to assessment 
 u(x; w) parametrized compactly

● Vector w encodes the utility functions
● Linear: u(x; w) = w ·  x
● Others: linear/additive, generalized additive models
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Minimax Regret definition

W = set of feasible utilility parameters
X= set of products
x = recommendation

 Max regret
 MR(x; W ) = maxy  X∈   maxw  W∈  u(y; w) − u(x; w) 

 
Minimax regret and minimax regret optimal x*W :

 MMR(W ) = min MR(x, W )   x∗
W  = argmin MR(x, W )

                x X       ∈                            x X                ∈
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Feature 1 Feature 2

o1
0.35 0.68

o2
0.9 0.2

o3
0 0.75

o4
1 0

o5
0.5 0.3

U(x; w
1
) = w1 * f1(x) + (1-w1) * f2(x)

w1 unknown
Adversary MR

o1 o4
0.65

o2 o3
0.55

o3 o4
1

o4 o3
0.75

o5 o4
0.5

o5 minimax regret optimal

o1

o2

o3

o5

o4
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Regret-based recommender

o1

o2

o3

o5

o4

User: o2 better than o1 → regret = 0.07

User: o4 better than o2 → regret = 0

Initial minimax regret = 0.5

W set of feasible utility 
functions

1)Initialize W with initial 
constraints

2) DO Generate current 
recommendations

3)Refine W given user's 
feedback

4) LOOP until user stops 
OR regret < Ԑ
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Minimax Regret Computation
Minimax regret can be formulated as a MIP

●Benders' decomposition + constraint generation techniques
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Max Regret Computation

 Can be encoded as a MIP for a variety of utility models 
(additive, GAI) and configuration problems

 Can be computed with a sequence of LP for database 
problems
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Structure of the Talk

1. Minimax Regret
2. Optimal Recommendation Set
3. Feature Elicitation

[work with Craig Boutilier]
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Recommendations Sets

Show products that are both
● Expected to be rated highly 
● Maximally informative should we have feedback

This work: optimal recommendation set given a sound decision-
theoretic semantics of the user interaction
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Utility of a set

The value of a set is dependent on the elements of the set jointly. 
We assume:

Utility(      ) = max 

A recommendation set gives “shortlisted” alternatives
Reasonable in practice: apartment search example

A
B
C

A
B
C

U(A)
U(B)
U(C)
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Regret → Setwise Regret
 We chooses the set of k options first, but delay the final choice from 

the slate after the adversary has chosen a utility function w in W
 Minimum difference btw options in the slate and (real) best option

 The setwise max regret SMR(Z; W) of a set Z:

                SMR(Z; W ) = max  max min   u(y; w) − u(x; w) 
                  y  X      w  W  x  Z∈ ∈ ∈

 The setwise minimax  regret SMMR(W)  and the optimal set Z*W :

  SMMR(W ) = min SMR(Z, W )             Z∗
W  = argmin SMR(Z, W )              

                                       Z c X : |Z|=k                             Z c X: |Z|=k                                      
 

  



20 

{o1, o4} setwise minimax regret optimal
Set Adversary w1

SMR

{o1, o4} o3
0 0.07

{o1, o2} o3
1 0.1

{o3, o2} o4
1 0.1

{o3, o4} o3
0.42 0.11

{o5, o4} o4 0 0.45

o1

o2

o3

o5

o4
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Incorporating User Feedback
Slate Z of k options viewed as a “query set” - user picks one

 

Worst-case Regret (wrt each possible answer)
●WR(Z) = max [ MMR(W1), MMR(W2), ..]

Which one 
do you prefer?

W2 W3

...
...

W1



22 

Two objectives

 Minimize SMR: recommendation set with lowest loss
 Minimize WR: query set with greater regret reduction after 

user answer (wrt worst-case)

 Straight minimization of WR is hard

Relation between SMR and WR ?
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Theorem

 The optimal recommmendation set Z*W is also the 
(myopically) optimal query set wrt worst-case regret (WR)

→ “Best recommendation set = best query set”

 The optimal query set can be chosen without enumeration
– We can compute setwise regret efficiently
– Setwise minimax regret can be formulated as a MIP
– Benders' decomposition + constraint generation techniques
– Approximation techniques



24 

Hillclimbing procedure
“minimax-regret rewriting”

 Start with {o5, o4}

 Assume o4 better than o5

• Compute MMR: this gives o2

 Assume o5 better than o4

• Compute MMR: this gives o1

 New query {o1, o2} 

o1

o3

o5

o1

o2

o3

o5

o4

Given a set Z = {x1,..,xk}
 DO

● Partition the utility space
●X1 option preferred → new 

space WZ→1

●...
●Xk option preferred → new 

space WZ→k

● Replace xi with x*
W

i , the 
MMR-optimal in Wi

 WHILE SMR(Znew) < SMR(Z)

The inner replacement can be 
proved not to increase SMR
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Empirical Results
Randomly generated 

quasilinear utility functions
Real dataset (~200 options)
User iteratively picks 

preferred option in a pair 
(k=2)

Measure regret reduction
 SMMR recommendations are 

significantly better than CSS
Hillclimbing (HCT) is as good 

as SMMR
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Critiquing Simulation
 Simulate a critiquing session

● Quasilinear utility model
● Synthetic dataset (5000 options)

 “Optimizing” user chooses best 
critique wrt real utility

 Alternate btw
● Selection of feature to improve 

('unit critique')
● Selection among a set of 3 

suggestions

HCT-based set recommendations 
gives best regret reduction
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Real Loss
Real loss (regret) is the difference 

to the actual optimum
 Set size k=3 
Regret-based recommender give 

optimal recommendation in very 
few cycles
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Structure of the Talk

1. Minimax Regret
2. Optimal Recommendation Set
3. Feature Elicitation

[work with Craig Boutilier and Kevin Regan]
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Subjective Features

Preference elicitation usually focuses on “catalog” 
attributes (or product specifications)

● Engine, size, color, fuel economy; number of bedrooms,…
We consider “user-defined” subjective features

● Constructed on the fly
● Application to critiquing interfaces (eg Findme)
● User can focus on fundamental objectives [Keeney]
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Subjective Features

SAFE CAR CrashTestRatings > Good AND easy to park

HasSideAirbags AND isSuv

size=big AND brand=volvo
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Feature Elicitation

 Feature elicitation vs. classical concept learning
● Learn just enough about a concept in order to make a good 

decision
● Reward model + feasibility constraints → near optimal 

recommendation with weak concept knowledge
● Minimize user queries

Example: preference for sporty cars, BUT luggage capacity more important.

 If all “sporty cars” have small luggage capacity, it is not worth continuing
 to learn more about  sporty!
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Abstract Model for Feature Elicitation

Product space X ⊆ Dom{X1 … Xn} 
● Reward r(X) reflects utility for catalog features
● Concept c(X) drawn from some hypothesis space H
● Bonus p: additional utility for an x satisfying c(x)
● Utility u(x; c) = r(x) + p c(x)
● Goal: recommend products with highest utility

Version space V
● Subset of H that is consistent with the current knowledge about 

the concept
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Minimax Regret over Concepts
Let V⊆ H be current version space
●c∈V iff c respects prior knowledge, responses, etc.
The adversary chooses concept and witness xw

If MMR(V) = ε, x* is ε–optimal.
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Characterizing MMR-Optimal Soln
MMR-optimal soln x*, xw, cw: interesting structure

● General-specific lattice > over V: c > c’ iff c’⊆ c
● Best x satisfying c: r*(c) = max { r(x) : x∈c, x∈X}

● Induces reward-ordering over V: r*(c1) > r*(c2) > …
● Reward ordering respects GS ordering

c1 c3

c2 c4 c5
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Characterizing MMR-Optimal Soln

c1 c3

c2 c4 c5

x* = x*(c1) 

cw = c2

xw = x*(c2) 

x* = x*(c1 ∩ c2) 

cw = c3

xw = x*(c3) 

x* = x*(c1 ∩ c2 ∩ c3) 

cw = c4

xw = x*(c4) 
PROPOSITION 
x* is either the product with highest reward OR

1) There is a concept in the version space V that satisfies it
2) x* in argmax{ r(x) : x in C

1
 ∩ .. ∩ C

i
 } for some i≥1

3) either cw in C
1
, or cw in C

i+1
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Computing MMR: Conjunctions

MMR encoded MIP
● Details and formulation depend on the hypothesis space
● Various encoding tricks to encode concept satisfaction
● Special case: conjunctions, memberships queries

■ e.g., “Do you consider this to be a safe car?”
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Computing MMR: Conjunctions
Maximization sub-problem 

●Find maximally violated constraint: concept that maximizes 
regret MR(x*,V)

●Let E+, E- be positive, negative instances
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Query Strategies
Aim: reduce regret quickly
 Several strategies using membership queries:

1. Halving: aims to learn concept directly
■“random” query x until positive response; then refine 

(unique) most specific concept in V (negate one literal at a 
time)

2. Current Solution (CS): tackle regret directly
■ If x*, xw both in cw → query xw (unless certain) 
■ If xw in cw but not x* → query x* (unless certain) 
■ If x*, xw both not in cw → query xw if xw (unless certain)

3. Several variants show modest improvements
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Experimental Results
30 variables, 20 random binary constraints, concepts have size 10, 
random reward/bonus, bonus = 25% of max reward
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Varying Constraint Tightness
Tighter constraints: sparser solution sets, more variability in r* values, 
more concepts in V without positive instances in X

●shown: number of queries to reach regret reduction of 80%
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Varying Relative Bonus
Greater bonus value: refining the concept becomes more critical

●shown: queries to reach regret reduction of 80% (20 constraints)
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Positive Instance as Seed
Once positive instance found, true “halving” kicks in

●assume user identifies a positive example immediately
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Feature + Utility Uncertainty
 Utility u(x; w, c) function of unknown weights and feature

● Require simultaneous utility and feature elicitation
● Doing one “completely” followed by other is wasteful

 Query strategies: which type of query?
● Interleaved strategies (I) asks membership query when 

'reward' component of regret is higher
● Phased Strategies (Ph): always ask membership when 

uncertain about concept
● Combined comparison-membership query (CCM): asks both 

comparison and membership queries about x* and x^w
■ In general, counts as 3 queries

 Query strategies: what to ask?
● Comparison query: CCSS
● Membership query: MCSS vs Halving
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Comparison Queries in Joint Model

User prefers x to y
• no feature uncertainty: linear constraint wx > wy
• feature uncertainty, more complicated

 ask membership: linear; e.g.,  wx + p > wy
 unknown membership: conditional constraints

• can be linearized in MIP
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 Interleaved elicitation strategies are better off than phased strategies
 (large problem size, 30 attributes)
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Summary

Minimax regret optimization for recommendation and utility 
elicitation

Formalization of recommendations of a joint set of alternatives
• We proposed a new criterion setwise regret

 Intuitive extension of regret criterion
 Guarantee on the quality of the recommendation set
 Efficient driver for further elicitation

Optimal recommendations sets = optimal query sets
– Computation & heuristics

Subjective Features
– Minimax regret formulation over concept
– Interleaved elicitation of utility and features
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Future works
 Contextual preference assessment

● Technologies like eye/gaze tracking 
(much less expensive than in the past!)

● Challenges: 
■ Effective learning algorithms to identify user 

context, and
■ Provide situated responses

 Social Networks
● Optimize diffusion
● Leverage similarities between nodes

 Bayesian Approaches
 Noisy models
 Applications: ranking, computational 

advertisement, planning systems
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Why Minimax Regret?

Minimizes regret in presence of adversary
●provides bound worst-case loss (cf. maximin)
●robustness in the face of utility function uncertainty
●We extend it to concept uncertainty
In contrast to Bayesian methods:
●useful when priors not readily available
●can be more tractable;  see [CKP00/02, Bou02]
●user unwilling to “leave money on the table” [BSS04]
●preference aggregation settings [BSS04]
●effective elicitation even if priors available [WB03]
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Constraint Generation

Constraint generation: avoid enumeration of V
• REPEAT
• Solve minimization problem with a subset GEN of V

The adversary's hands are tied to choose a couple (w, y) from 
this subset 

 LB of minimax regret
• Find max violated constraint computing MR(x)

UB of minimax regret 
• Add the adversarial choice to GEN
• Terminate WHEN UB = LB
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Setwise Regret Computation

Setwise minimax regret can be formulated as a MIP
• Benders' decomposition + constraint generation techniques
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Version Space Example

A B Not A Not B

A and B not A and B A and not B not A and not B

Most specific concepts

Most generic concepts

nil

T
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Min choice

Max choice

x2

x3
x1

x1 x2 x3 x1 x2 x3 x2 x3

0 0.7 00 0.40.20.50 0.3

x1

0.2

0.4 0.70.5

0.4

(Single Item) Minimax Regret 
Computation 
Configuration problems

• Benders' decomposition and constraint generation to break 
minimax program

Discrete datasets 
• Adversarial search with two plys
• Heuristics: 
• order to maximize pruning

 Sample hypercube vectors
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