
Preference Elicitation with Subjective Features
Craig Boutilier, Kevin Regan & Paolo Viappiani

Department of Computer Science - University of Toronto

Introduction Computing Minimax Regret: Conjunctions Experimental Results - Effectiveness

Experimental Results - Sensitivity

Max Regret: Conjunctions

Constraint Generation

Summary & Future Directions

• Make decisions on behalf of the user / help users making decisions
• Product configuration, recommender systems, personal assistants

• Preference elicitation
• What is the objective function?
• Is the elicitation effort worth the improvement it offers w.r.t. decision quality?
• Our vision: open-ended preference elicitation
• Let users express their preferences in a way that is natural to them

• Subjective Features
• Preference elicitation usually focuses on “catalog” attributes (or product

specifications)
• engine size, color, fuel economy; number of bedrooms,…

• We consider “user-defined” subjective features
• Constructed on the fly

Model

Learn just enough about a concept in order to provide good recommendations

Abstract Model for Feature Elicitation
• Product space X ⊆ Dom{X1 … Xn}

• Reward r(X) reflects utility for catalog features
• Concept c(X) drawn from some hypothesis space H
• Bonus p: additional utility for an x satisfying c(x)
• Utility u(x) = r(x) + p c(x)
• Goal: recommend products with highest utility

• Focus on combined elicitation of subjective features and reward weights
• r,c and p are all unknown

• Version space V
• Subset of H that is consistent with the current knowledge about the concept

• W is the set of feasible utility functions

Minimax Regret over Concepts and Utility Space
• Let V⊆ H be current version space
• c∈V iff c respects prior knowledge, responses, etc. Similarly W is updated
• The adversary chooses concept and witness xw

• If MMR(W,V) = ε, x* is ε–optimal.

Aim: reduce regret quickly

Strategies for Membership Queries
• Halving: aims to learn concept directly

• “random” query x until positive response; then refine (unique) most specific
concept in V (negate one literal at a time)

• Current Solution (MCSS): tackle regret directly
• If x*, xw both in cw : query xw (unless certain)
• If xw in cw but not x* : query x* (unless certain)
• If x*, xw both not in cw : query xw if xw (unless certain)

Strategies for Comparison Queries
• Current Solution (CCSS):

• compare x* and xw

Strategies for deciding query type
• Phased: always ask membership queries if there is some concept uncertainty
• Interleaved: ask comparison queries when the reward component of regret is

higher: r(xw;w)-r(x*;w) > wb(c(xw) - c(x*))

• Difficulties computing minimax regret:
• Minimax (integer) program (not straight min or max)
• Generally quadratic objective

• General approach:
• Benders' decomposition and constraint generation to break minimax program
• Various encoding tricks to linearize quadratic terms

• The Minimax Regret Computation is encoded as a Mixed Integer Program

Constraint generation avoids the enumeration of W and V
• REPEAT
• Solve minimization problem with a subset GEN of W,V

• The adversary's hands are tied to choose a concept from this subset
• LB of minimax regret

• Find max violated constraint computing MR(x)
• UB of minimax regret

• Add the concept to GEN
• Terminate when UB = LB

In practice MMR computation require less than 1s

Find maximally violated constraint: combination of weight vector and concept that
maximizes regret MR(x*,W,V)

• Let E+, E- be positive, negative instances

hasSideAirbags
AND isSUV

CrashTestRatings ≥ good
AND abs AND fourWheelDrive

Size=Big AND brand ≠ gm

Different
Defintions of

“Safe”

 Interleaved MCSS & CCSS Bonus Sensitivity

Number of comparison queries vs the
number of membership queries used

Greater bonus value: refining the
concept becomes more critical

MMR vs # Queries MMR vs # Queries

Contributions
• Minimax regret formulation over concept
• Query strategies to reduce regret

Future Directions
• Further development of query strategies
• Non-additive utility models such as GAI
• Richer hypothesis spaces

Query Strategies

negatively) in c. ThenMMR(V) is given by:
min δ

s.t. δ ≥ r(x∗

w,c)−r(X1, · · ·Xn)

+ b(x∗

w,c, c)−wbI
c ∀c∈V,∀w∈W (4)

Ic ≤ Xj ∀c ∈ V,∀xj ∈ c (5)
Ic ≤ 1 − Xj ∀c ∈ V, ∀xj ∈ c (6)

For any fixed concept c and utility function w ∈ W , the adversary
maximizes the regret of (X1, · · · , Xn) with witness product x∗

w,c.
The MIP above chooses a configuration that minimizes against the
“worst-case” choice of the adversary (with (4) ensuring MMR is
as great as regret given any c ∈ V, w ∈ W ; and (5, 6) encoding
whether (X1, · · · , Xn) satisfies c).
Regret constraints for most w ∈ W,c ∈ V will be inactive, so

we use constraint generation to search through the space of adver-
sarial utility functions and concepts. Let Gen ⊆ W × V be a
(small) set of (w, c)-pairs (initially a single pair); we solve a re-
laxed MIP using only constraints for those (w, c) ∈ Gen . Let
δ∗ and x∗ be the solution to the relaxed MIP. We test for violated
constraints by solving the max regret problemMR(x∗; W, V), de-
tailed below. If MR(x∗, W,V) > δ∗, the utility-concept pair
(w′, c′)—produced as a witness in max regret computation—offers
larger regret for x∗ than any (w, c) ∈ Gen; indeed, it corresponds
to the maximally violated constraint in the relaxed MIP. So we add
(w′, c′) to Gen and resolve. If MR(x∗; W, V) = δ∗, x∗ is the
optimal solution toMMR(W,V).

Generating Violated Constraints We compute the maximally
violated constraint for the MIP above by solving the max regret
problem MR(x∗; W,V) for the current relaxed solution x∗. This
too can be formulated as a MIP that, given x∗, chooses an (adver-
sarial) concept c, utility w and configuration. Details are omitted,
but we use a standard reformulation to convert quadratic terms into
a continuous variable, giving us a linear objective (similar to [2]).

3. SIMULTANEOUS FEATURE AND UTIL-
ITY ELICITATION

While minimax regret provides an appealing means for making
recommendations under utility and feature uncertainty, our aim is
to learn enough about a user’s preferences and underlying concept
to make good (or even optimal) recommendations, while asking as
few queries as possible. In this section, we develop several heuristic
query strategies that can quickly reduce MMR(W,V). We begin
with a discussion of several forms of queries.

Query Types With respect to explicit concept queries we restrict
attention to membership queries of the form “does x satisfy concept
c?” (e.g., “Do you consider car x to be safe?”). Each membership
query gives rise to a positive or negative concept example, and the
version space can be encoded in a variety of ways depending on the
hypothesis class [6].
Especially natural are comparison queries: a user is asked if she

prefers one product x to another y. Such comparisons can be lo-
calized to specific subsets of attributes as well, depending on the
form of the utility model and can be generalized to choice sets over
more than two products.
Responses to these and other common queries impose linear con-

straints onW when subjective features are absent. But the situation
becomes more complicated when feature uncertainty is added. If a
user states that she prefers x toy in response to a comparison query,
we can no longer impose simple constraints onW . The greater util-
ity of x could be due to its satisfaction of the subjective feature; but
we this cannot be reflected in the weight vector alone. This can

introduce complicating constraints that tieW and V together. One
simple solution to this problem is to ask concept queries whenever
one asks a comparison query. More precisely, if a user is asked
whether she prefers x or y, a membership query can be asked of
each outcome at the same time (e.g., “is x safe?”). This is rea-
sonably natural, since the assessment of preference likely involves
some cognitive assessment of the subjective feature in question.
We call such a query a combined comparison/membership (CCM)
query. This allows us to impose simple valid linear constraints;
e.g., if x is preferred and satisfies the concept, while y does not,
then we have wx + b − wy > 0.
However, if we want a pure comparison query without the corre-

sponding membership queries, we can still impose valid (and com-
plete) conditional constraints onW , based on the whether x,y sat-
isfy the concept, thus linkingW and V . In the case of conjunctive
concepts, we can linearize these conditional constraints without the
introduction of new variables.

Elicitation Strategies We now develop elicitation strategies for
simultaneous utility and feature uncertainty.
For the choice of an appropriate comparison query, we adopt the

current solution strategy (CCSS) [2]: given the minimax optimal
solution x∗

W,V and the adversarial witness xa, the user is asked
which of these two products is preferred.
To select membership queries, we examine two methods explored

in [3]. The first is a simple halving strategy adapted from standard
conjunctive concept learning: we ask random memberships queries
until a positive example is found; then queries are asked by negat-
ing literals one by one in the (unique) most specific conjunctive
hypothesis. Once a positive example is found, this converges to
the true conjunctive concept using a number of queries linear in the
number of catalog features.
We also explore the current solution strategy for membership

queries (MCSS): this selects a query based on which of the optimal
product x∗

W,V and/or witness xa satisfy the adversary’s choice of
concept ca in the current solution. If x∗

W,V ,xa ∈ ca, then CSS
asks membership query xa; if x∗

W,V (∈ ca,xa ∈ ca, then CSS
asks query x∗

W,V ; otherwise CSS asks a query depending on the
whether xa is V -consistent (see [3] for further details and motiva-
tion). MCSS will never as a membership query if the product in
question is “certain” (i.e., has its concept status determined unam-
biguously by V).
Unlike the cases of pure utility or pure feature elicitation, in the

simultaneous case, wemust make a decision at each stage regarding
which type of query to ask, membership or comparison.
In our “interleaved” strategies below, we decompose max regret

of the current solution into reward regret and concept regret and
use these measures to determine whether to ask a comparison (util-
ity) query or a membership (concept) query, depending on which is
larger. Let (x∗,xa, w, c) be the current solution. Max regret of x∗

is rr + cr (reward regret plus concept regret), where

rr = r(xa; w) − r(x∗; w); cr = wb(c(x
a) − c(x∗))

Given this, we examine five query strategies. Two are phased
strategies that first attempt to learn the concept and then refine
the utility function. The first is dubbed Ph(H,CCSS) and initially
uses the halving algorithm (membership queries) to determine the
precise concept definition, and then uses CCSS (comparisons) to
refine utility function uncertainty. The second phased strategy is
Ph(MCSS,CCSS) and has the same form as the first, but uses MCSS
to generate membership queries. Of course, MCSS can “stall” if the
current solution is such that minimax optimal and adversarial prod-
ucts are V -certain. In such a case, a comparison query is asked. As

Simultaneous Feature and Utility Elicitation

Query Type:
• Membership query

• Does x satisfy concept c. Example: Do you consider this car safe?
• Comparison Query

• Is u(x) > u(y). Example: Do you prefer this car to that car?

Responses to concept query refine version space
Responses to comparison queries impose conditional constraints w.r.t. W

These can be encoded with a set of IP constraints, for example (2):

classes one admits. We illustrate the formulation for the case of
(nonmonotone) conjunctive concepts with membership queries.
Assume target c is a conjunction of literals over variables Xj .

Memberships queries ask whether x ∈ c for some product x. Let
E+ (E−) be the set of positive (negative) examples acquired by
these queries, and (nonempty) V the induced version space. Instead
of representing V using most general and most specific concepts,
we encode E+ and E− directly in our MIP below (e.g., negative
examples can directly represent most general concepts [16]).
Constraint Generation We formulate the minimax problem Eq. 2
as a semi-infinite minimization. Let (X1, · · · , Xn) be configura-
tion variables over our n features: its instantiation will denote the
minimax optimal product. Let constant b(x, w, c) = wb if c(x)
and 0 otherwise. Let indicator variable Ic, for each c ∈ V , de-
note that configuration (X1, · · · , Xn) satisfies c; and write xj ∈ c
(resp., xj ∈ c) to denote that variable Xj occurs positively (resp.,
negatively) in c. ThenMMR(V) is given by:

min δ

s.t. δ ≥ r(x∗
w,c)−r(X1, · · ·Xn)

+ b(x∗
w,c, c)−wbI

c ∀c∈V,∀w∈W (4)
Ic ≤ Xj ∀c ∈ V,∀xj ∈ c (5)
Ic ≤ 1 − Xj ∀c ∈ V, ∀xj ∈ c (6)

For any fixed concept c and utility function w ∈ W , the adversary
maximizes the regret of (X1, · · · , Xn) with witness product x∗

w,c.
The MIP above chooses a configuration that minimizes against the
“worst-case” choice of the adversary (with (4) ensuring MMR is
as great as regret given any c ∈ V, w ∈ W ; and (5, 6) encoding
whether (X1, · · · , Xn) satisfies c).
While this MIP has infinitely many constraints, regret will be

maximized at vertices P of polytope W , so this can be replaced by
a finite MIP with O(|P ||V |) constraints. However, even this gives
a MIP of unreasonable size: P can grow exponentially in |X |; and
V is exponential in |X | with conjunctive concepts (and can have
doubly exponential size for other hypothesis spaces). Fortunately,
regret constraints for most w ∈ W, c ∈ V will be inactive, so we
use constraint generation to search through the space of adversarial
utility functions and concepts. Let Gen ⊆ W × V be a (small)
set of (w, c)-pairs (initially a single pair); we solve a relaxed MIP
using only constraints for those (w, c) ∈ Gen . Let δ∗ and x∗ be
the solution to the relaxed MIP. We test for violated constraints by
solving the max regret problemMR(x∗; W, V), detailed below. If
MR(x∗, W, V) > δ∗, the utility-concept pair (w′, c′)—produced
as a witness in max regret computation—offers larger regret for x∗

than any (w, c) ∈ Gen; indeed, it corresponds to the maximally
violated constraint in the relaxed MIP. So we add (w′, c′) to Gen
and resolve. IfMR(x∗; W, V) = δ∗, x∗ is the optimal solution to
MMR(W,V).

Generating Violated Constraints We compute the maximally
violated constraint for the MIP above by solving the max regret
problem MR(x∗; W,V) for the current relaxed solution x∗. This
too can be formulated as a MIP that, given x∗, chooses an (adver-
sarial) concept c, utility w and configuration. For each configura-
tion variable Xj , let binary indicator variable I(xj) (resp., I(xj))
denote that Xj is positive (resp., negative) in the (adversarially se-
lected) concept c (if both indicators are false, Xj is not part of the
concept). We also introduce binary variablesBx andBa indicating
that x and the witness allocation, respectively, satisfy c.
The straightforward encoding of MR(x; W, V) in Eq. 1 gives

rise to following objective:

max
X

j≤n

wjXj + wbB
a
− r(x; w) − wbB

x
.

However, because of utility uncertainty, the components of w are
variables, leaving us with a quadratic objective. We use a standard
reformulation to convert the product of a continuous and binary
variable into a continuous variable, giving us the linear objective in
the MIP below. Using x[j] to denote the jth literal of x, this MIP
givesMR(x; W,V):

max
X

j≤n

Yj + Za −
X

j≤n

wjx[j] − Zx

s.t. Ba + I(xj) ≤ Xj + 1.5 ∀j ≤ n (7)
Ba + I(xj) ≤ (1 − Xj) + 1.5 ∀j ≤ n (8)

Bx ≥ 1 −
X

j:x[j] positive

I(xj) −
X

j:x[j] negative

I(xj) (9)

X

j

I(¬y[j]) = 0 ∀y ∈ E+ (10)

X

j

I(¬y[j]) ≥ 1 ∀y ∈ E− (11)

Yj ≤ Xjwj↑; Yj ≤ wj ∀j ≤ n (12)
Za ≤ Bawb↑; Za ≤ wb (13)
Bxwb↓ ≤ Zx; Bxwb↑ ≤ Zx + wb↑ − wb (14)
(w1, · · · , wn, wb) ∈ W ; (X1, · · · , Xn) ∈ X (15)

Herewj↑ andwj↓ denote (constant) upper and lower bounds onwj .
Yj represents the productwjXj , and takes that meaning due to con-
straint (12), and the fact that Y j is maximized in the objective. Za

represents product wbB
a (constraint 13). Zx represents product

pBx (14 and its minimization in the objective). Constraints (7,8)
ensure that the adversary does not get the concept bonus wb (i.e.,
cannot setBa = 1) unless (X1, · · · , Xn) satisfies the concept dic-
tated by the I-variables. Similarly, (9) ensures that the input con-
figuration x cannot be denied the bonus (i.e., the adversary cannot
set Bx = 0) unless x violates at least one conjunct in the cho-
sen concept. Finally, (10, 11) restrict the conjunctive concept to be
consistent with all positive and negative examples.

4. SIMULTANEOUS FEATURE AND UTIL-
ITY ELICITATION

While minimax regret provides an appealing means for making
recommendations under utility and feature uncertainty, our aim is
to learn enough about a user’s preferences and underlying concept
to make good (or even optimal) recommendations, while asking as
few queries as possible. In this section, we develop several heuristic
query strategies that can quickly reduce MMR(W, V). We begin
with a discussion of several forms of queries.

Query Types With respect to explicit concept queries we restrict
attention to membership queries of the form “does x satisfy con-
cept c?” (e.g., “Do you consider car x to be safe?”). Such queries
are quite natural in this setting, arguably much more so than equiv-
alence, subset and other queries commonly considered in the con-
cept learning literature. Each membership query gives rise to a
positive or negative concept example, and the version space can be
encoded in a variety of ways depending on the hypothesis class [16]
(e.g., see our encoding in the MIP above).
There are a variety of query types that can be used to refine

one’s knowledge of a user’s utility function (we refer to [17, 4,
7] for further discussion). Simple queries like bound queries ask
the user to directly refine bounds on specific utility parameters
using yes/no questions (e.g., is wj ≥ b; is your local value for
Color = red > $250?). This can be recast as local standard gam-
ble queries that simply requires the user to choose one from a pair

Figure 2: Minimax Regret vs. Number of Queries (30 variables, 90
constraints), averaged over 20 runs
ever asked), so their effectiveness is identical until the concept re-
gret becomes dominant. When this happens, MCSS membership
queries are more effective than halving queries, but only by a small
margin. After 80 cycles, max regret is reduced to about a third
of its original value. In contrast, the phased strategies fail to re-
duce regret significatively: after 80 queries, max regret remains at
roughly 65% of its original value. We conjecture this poor perfor-
mance is due to the priority the phased methods place on learning
the subjective feature “almost fully” before beginning to assess the
impact of refining utility function (weight) uncertainty on minimax
regret, ignoring the possible advantages of reducing utility uncer-
tainty straight away.
The combined strategy CCM performs worse than in the small

problems, but is still better than either phased approach. CCM
might be considered in case where very fast computation is needed.
It is also important to note that with CCM, each interaction counts
as three queries, since the user must answer a comparison query and
two membership queries. However, these three queries are strongly
related, since one asks a comparison and membership query of the
same three outcomes. Thus the cognitive cost of a CCM interaction
might be significantly less than 3 queries. A “leftward compres-
sion” of the CCM curve would make the strategy seem somewhat
more competitive.
We also analyzed the behavior of the strategies with respect to

the mix of queries they tended to ask. Since the phased strategies
are somewhat more predictable, we are particularly interested in
the interleaved strateg. Figure 3 shows the cumulative number of
membership queries and comparison queries, as a function of the
minimax regret level for the interleaved strategy I(MCSS,CCSS).
We see that most user sessions start off with a series of compar-
ison queries until reward regret is reduced to a low enough level,
at which point the strategy switches almost exclusively to mem-
bership queries, until a final short period during which it tends to
alternate between comparison and membership queries. Overall
I(MCSS,CCSS) asks more membership than comparison queries,
which may seem surprising given the low relative bonus value.
However, in fact, this behavior can be explained by noting that, on
average, comparisons are more effective in reducing regret. When
reward regret is low, then a relatively large number of membership
queries are required to further reduce regret. This is clearly evi-
dent from the slope of the two curves in Figure 3: the steepness of
the membership query curve near the end means that each query is
providing a relatively small amount of regret reduction on average.

Figure 3: Number of queries by type for I(MCSS,CCSS).

Figure 4: Bonus sensitivity, I(MCSS,CCSS) and Ph(MCSS,CCSS)
(small problem), averaged over 30 runs

We also show how the performance of the different query strate-
gies is impacted as the relative importance of the subjective features
varies. Intuitively, the greater the relative importance of a subjec-
tive feature is to overall utility, the more important determining a
more accurate concept definition becomes. We illustrate this sensi-
tivity on small random configuration problems in Fig. 4 which show
the number of both membership queries and comparison queries
used by each strategy to reach a minimax regret level of 25% of the
original minimax regret (before any interaction). We show how it
varies as the relative importance of the subjective feature is varied
from 5% to 20% of the overall utility bound. In all cases, the inter-
leaved strategy performs better than the phased strategy, confirm-
ing the intuition that simultaneously asking membership and com-
parison queries has significant advantages. Specifically, by using
heuristics to determine which query form is most likely to reduce
regret, the interleaved strategy seems to adapt itself well to differ-
ent settings. As expected, the phased strategy Ph(MCSS,CCSS)
asks predominantly membership queries. The interleaved strategy,
by contrast, asks mostly comparison queries in the setting with low
b!, but when b! is set to 10 % or 20 %, it asks more member-
ship queries, indicating its flexibility. Not surprisingly, the relative
overall advantage of I(MCSS,CCSS) diminishes somewhat as the

Figure 2: Minimax Regret vs. Number of Queries (30 variables, 90
constraints), averaged over 20 runs
ever asked), so their effectiveness is identical until the concept re-
gret becomes dominant. When this happens, MCSS membership
queries are more effective than halving queries, but only by a small
margin. After 80 cycles, max regret is reduced to about a third
of its original value. In contrast, the phased strategies fail to re-
duce regret significatively: after 80 queries, max regret remains at
roughly 65% of its original value. We conjecture this poor perfor-
mance is due to the priority the phased methods place on learning
the subjective feature “almost fully” before beginning to assess the
impact of refining utility function (weight) uncertainty on minimax
regret, ignoring the possible advantages of reducing utility uncer-
tainty straight away.
The combined strategy CCM performs worse than in the small

problems, but is still better than either phased approach. CCM
might be considered in case where very fast computation is needed.
It is also important to note that with CCM, each interaction counts
as three queries, since the user must answer a comparison query and
two membership queries. However, these three queries are strongly
related, since one asks a comparison and membership query of the
same three outcomes. Thus the cognitive cost of a CCM interaction
might be significantly less than 3 queries. A “leftward compres-
sion” of the CCM curve would make the strategy seem somewhat
more competitive.
We also analyzed the behavior of the strategies with respect to

the mix of queries they tended to ask. Since the phased strategies
are somewhat more predictable, we are particularly interested in
the interleaved strateg. Figure 3 shows the cumulative number of
membership queries and comparison queries, as a function of the
minimax regret level for the interleaved strategy I(MCSS,CCSS).
We see that most user sessions start off with a series of compar-
ison queries until reward regret is reduced to a low enough level,
at which point the strategy switches almost exclusively to mem-
bership queries, until a final short period during which it tends to
alternate between comparison and membership queries. Overall
I(MCSS,CCSS) asks more membership than comparison queries,
which may seem surprising given the low relative bonus value.
However, in fact, this behavior can be explained by noting that, on
average, comparisons are more effective in reducing regret. When
reward regret is low, then a relatively large number of membership
queries are required to further reduce regret. This is clearly evi-
dent from the slope of the two curves in Figure 3: the steepness of
the membership query curve near the end means that each query is
providing a relatively small amount of regret reduction on average.

Figure 3: Number of queries by type for I(MCSS,CCSS).

Figure 4: Bonus sensitivity, I(MCSS,CCSS) and Ph(MCSS,CCSS)
(small problem), averaged over 30 runs

We also show how the performance of the different query strate-
gies is impacted as the relative importance of the subjective features
varies. Intuitively, the greater the relative importance of a subjec-
tive feature is to overall utility, the more important determining a
more accurate concept definition becomes. We illustrate this sensi-
tivity on small random configuration problems in Fig. 4 which show
the number of both membership queries and comparison queries
used by each strategy to reach a minimax regret level of 25% of the
original minimax regret (before any interaction). We show how it
varies as the relative importance of the subjective feature is varied
from 5% to 20% of the overall utility bound. In all cases, the inter-
leaved strategy performs better than the phased strategy, confirm-
ing the intuition that simultaneously asking membership and com-
parison queries has significant advantages. Specifically, by using
heuristics to determine which query form is most likely to reduce
regret, the interleaved strategy seems to adapt itself well to differ-
ent settings. As expected, the phased strategy Ph(MCSS,CCSS)
asks predominantly membership queries. The interleaved strategy,
by contrast, asks mostly comparison queries in the setting with low
b!, but when b! is set to 10 % or 20 %, it asks more member-
ship queries, indicating its flexibility. Not surprisingly, the relative
overall advantage of I(MCSS,CCSS) diminishes somewhat as the

Figure 2: Minimax Regret vs. Number of Queries (30 variables, 90
constraints), averaged over 20 runs
ever asked), so their effectiveness is identical until the concept re-
gret becomes dominant. When this happens, MCSS membership
queries are more effective than halving queries, but only by a small
margin. After 80 cycles, max regret is reduced to about a third
of its original value. In contrast, the phased strategies fail to re-
duce regret significatively: after 80 queries, max regret remains at
roughly 65% of its original value. We conjecture this poor perfor-
mance is due to the priority the phased methods place on learning
the subjective feature “almost fully” before beginning to assess the
impact of refining utility function (weight) uncertainty on minimax
regret, ignoring the possible advantages of reducing utility uncer-
tainty straight away.
The combined strategy CCM performs worse than in the small

problems, but is still better than either phased approach. CCM
might be considered in case where very fast computation is needed.
It is also important to note that with CCM, each interaction counts
as three queries, since the user must answer a comparison query and
two membership queries. However, these three queries are strongly
related, since one asks a comparison and membership query of the
same three outcomes. Thus the cognitive cost of a CCM interaction
might be significantly less than 3 queries. A “leftward compres-
sion” of the CCM curve would make the strategy seem somewhat
more competitive.
We also analyzed the behavior of the strategies with respect to

the mix of queries they tended to ask. Since the phased strategies
are somewhat more predictable, we are particularly interested in
the interleaved strateg. Figure 3 shows the cumulative number of
membership queries and comparison queries, as a function of the
minimax regret level for the interleaved strategy I(MCSS,CCSS).
We see that most user sessions start off with a series of compar-
ison queries until reward regret is reduced to a low enough level,
at which point the strategy switches almost exclusively to mem-
bership queries, until a final short period during which it tends to
alternate between comparison and membership queries. Overall
I(MCSS,CCSS) asks more membership than comparison queries,
which may seem surprising given the low relative bonus value.
However, in fact, this behavior can be explained by noting that, on
average, comparisons are more effective in reducing regret. When
reward regret is low, then a relatively large number of membership
queries are required to further reduce regret. This is clearly evi-
dent from the slope of the two curves in Figure 3: the steepness of
the membership query curve near the end means that each query is
providing a relatively small amount of regret reduction on average.

Figure 3: Number of queries by type for I(MCSS,CCSS).

Figure 4: Bonus sensitivity, I(MCSS,CCSS) and Ph(MCSS,CCSS)
(small problem), averaged over 30 runs

We also show how the performance of the different query strate-
gies is impacted as the relative importance of the subjective features
varies. Intuitively, the greater the relative importance of a subjec-
tive feature is to overall utility, the more important determining a
more accurate concept definition becomes. We illustrate this sensi-
tivity on small random configuration problems in Fig. 4 which show
the number of both membership queries and comparison queries
used by each strategy to reach a minimax regret level of 25% of the
original minimax regret (before any interaction). We show how it
varies as the relative importance of the subjective feature is varied
from 5% to 20% of the overall utility bound. In all cases, the inter-
leaved strategy performs better than the phased strategy, confirm-
ing the intuition that simultaneously asking membership and com-
parison queries has significant advantages. Specifically, by using
heuristics to determine which query form is most likely to reduce
regret, the interleaved strategy seems to adapt itself well to differ-
ent settings. As expected, the phased strategy Ph(MCSS,CCSS)
asks predominantly membership queries. The interleaved strategy,
by contrast, asks mostly comparison queries in the setting with low
b!, but when b! is set to 10 % or 20 %, it asks more member-
ship queries, indicating its flexibility. Not surprisingly, the relative
overall advantage of I(MCSS,CCSS) diminishes somewhat as the

20 variables, 60 constraints 30 variables, 90 constraints

she does for other car attributes) represented in the form of a util-
ity function: it is both the user’s utility function over this extended
attribute space, as well as her personal definition of safety, that de-
termines the optimal vehicle. As such, the recommender system
must engage in both preference elicitation and feature elicitation
to make a suitable recommendation.3
This leads to interesting tradeoffs in elicitation. One could en-

gage in feature elicitation using well-known concept learning tech-
niques [1, 15] and then, with a full definition in hand, move to
preference elicitation (e.g., using techniques mentioned above); but
this could be wasteful. For instance, suppose we learn that safety
requires attribute Xi to be true (e.g., have side airbags) but know
nothing else about the concept. If we engaged in preference elic-
itation simultaneously and ascertained that no cars in the user’s
price range satisfyXi—or that other more important features must
be sacrificed to attain Xi—then the full concept definition is not
needed for optimal allocation. Conversely, we could engage in
preference elicitation, using the subjective feature as an attribute
without knowing its definition, and then engage in feature elicita-
tion to determine a final recommendation. However, without some
idea of the concept definition, early termination criterion using re-
gret, and many useful querying strategies are not available; gener-
ally, much more preference information will be elicited than nec-
essary. This suggests that interleaved feature and utility elicitation
can be much more effective.
In this section, we first formalize our basic model of utility and

concept uncertainty; we then define the minimax regret decision
criterion for this case; finally, we develop a MIP formulation for
solving the computing minimax regret. We turn to the question of
elicitation in the next section.

3.1 Basic Model
As above, assume features X = {X1, ...Xn}, which we take to

be Boolean for ease of exposition, and a feasible product set X ⊆
Dom(X). The user’s utility for any product x ∈ X is decomposed
into two components. First, the user has some utility or reward
w.r.t. catalog features. We denote this by function r(x; w) where
w denotes the parameters of this reward function. In what follows,
we assume r is additive over X (this is not critical, only that r is
linear in whatever parameterization w we adopt).
The user also has a preference for configurations satisfying some

target concept c. Concept c is an unknown Boolean function over
X : c(x) = c(x1, . . . ,xn).4 We suppose that c is drawn from a
particular function class/hypothesis space H (e.g., the set of con-
junctive concepts). We treat identification of c as a problem of
concept learning [1, 13, 15], with some query set Q that can be
used to refine the target concept. For instance, membership queries
would be quite natural (e.g., “do you consider the following car to
be safe?”).5 A value or bonus b is associated with any x s.t. c(x)
holds, representing user utility for concept satisfaction.
Let c be the user’s subjective feature or concept, w her reward

vector, and b her bonus. Since b is simply another utility param-
eter, we incorporate it into w (using wb to denote its value in w).
are best-suited to helping user’s navigate through products with
such features (hence the special popularity of CF for products that
are almost purely non-functional or aesthetic in their appeal, like
movies, music and books).
3In cases where a very small number of definitions exist that tend
to apply to specific user types, one could imagine predefining these
features and quickly discriminating them. However, our aim is to
allow more open-ended feature definition.
4Allowing multivalued concepts is straightforward.
5Other query types (e.g., equivalence queries) are less natural in
this domain, but may play a role in others.

Assuming utility independence for concept satisfaction relative to
other preferences, we define the utility of x under concept c and
reward/bonus weight vector (or utility parameters) w to be:

u(x; w, c) = r(x;w) + wbc(x)

(We treat c(x) as an indicator function for concept satisfaction). In
other words, the utility of x is its reward, plus the bonus b if x sat-
isfies c. The optimal configuration is x∗

w,c = arg maxu(x; w, c).
Since c is definable in terms of catalog features, we could in

principle elicit utilities using only catalog features. However, al-
lowing a user to articulate her preferences in terms of natural com-
posite features can dramatically reduce the burden of elicitation;
furthermore, the addition of such aggregate features with suitable
definitions can greatly increase the degree of (conditional) utility
independence in a model.

3.2 Minimax Regret
During preference elicitation, we are uncertain about the true

utility w and the true user concept c. As a result, we cannot gener-
ally identify the optimal product x∗

w,c; but we can still make a deci-
sion with partial utility and concept information. Let W be the set
of feasible utility functions, those consistent with any prior infor-
mation we have about user preferences and user query responses.
W is generally a convex polytope given by linear constraints on
utility parameters (as discussed below). Let version space V ⊆ H
represent our current set of consistent hypotheses w.r.t. c [20], i.e.,
those that respect any prior knowledge about the concept and re-
sponses to queries (as discussed below). Define minimax regret
w.r.t. utility and feature uncertainty:

Definition 2 Given utility space W and version space V , the max
regret of x ∈ X, the minimax regret of (W,V) and the minimax
optimal configuration are:

MR(x;W, V) = max
w∈W

max
c∈V

max
x′∈X

u(x′; w, c) − u(x; w, c) (1)

MMR(W, V) = min
x∈X

MR(x; W,V) (2)

x
∗
W,V = arg min

x∈X
MR(x; W,V) (3)

Should we recommend option x, max regretMR(x; W, V) bounds
(tightly) how far this decision could be from optimal. Intuitively,
an adversary selects the user’s utility function w and the intended
subjective feature definition c to maximize the difference in util-
ity between our choice x and the optimal choice x∗

w,c (notice that
the adversary’s maximizing configuration must be optimal under
(w, c)). A minimax optimal choice is any product that minimizes
max regret in the presence of such an adversary, and its max regret
is the minimax regret given our current uncertainty.
This definition can be generalized in the obvious way if the ver-

sion space V and utility space W are linked by complicating con-
straints. This can arise, for example, if the choice of c ∈ V limits
the choice of w ∈ W (we will see how this can arise given certain
query types below).

3.3 Computing Regret: Conjunctive Concepts
Computing minimax regret with utility function uncertainty is

generally difficult, and becomes more difficult still when we add
feature uncertainty. We assume that the underlying configuration
problem is represented as a MIP maxx∈X u(x). We can then in-
corporate utility uncertainty (in the form of a bounded polytopeW)
into the MIP following [4], and feature uncertainty in the form of a
version space V following [5]. However, in the latter case, the for-
mulation depends critically on the form of the concept and query

of “local” options. Especially natural are comparison queries: a
user is asked if she prefers one product x to another y. Such com-
parisons can be localized to specific subsets of attributes as well,
depending on the form of the utility model [7], and can be general-
ized to choice sets over more than two products (as is common in
conjoint analysis [24]).
Responses to these and other common queries impose linear con-

straints onW when subjective features are absent. But the situation
becomes more complicated when feature uncertainty is added. If a
user states that she prefers x toy in response to a comparison query,
we can no longer impose simple constraints onW . The greater util-
ity of x could be due to its satisfaction of the subjective feature; but
we this cannot be reflected in the weight vector alone. This can
introduce complicating constraints that tieW and V together. One
simple solution to this problem is to ask concept queries whenever
one asks a comparison query. More precisely, if a user is asked
whether she prefers x or y, a membership query can be asked of
each outcome at the same time (e.g., “is x safe?”). This is rea-
sonably natural, since the assessment of preference likely involves
some cognitive assessment of the subjective feature in question.
We call such a query a combined comparison/membership (CCM)
query. This allows us to impose simple valid linear constraints;
e.g., if x is preferred and satisfies the concept, while y does not,
then we have wx + b − wy > 0.
However, if we want a pure comparison query without the corre-

sponding membership queries, we can still impose valid (and com-
plete) conditional constraints on W , based on the whether x,y
satisfy the concept, thus linkingW and V . Intuitively, we have the
following conditional constraints if x is preferred to y:

wx − wy > 0 if c(x), c(y) (16)
wx + b − wy > 0 if c(x),¬c(y) (17)
wx − wy − b > 0 if ¬c(x), c(y) (18)

wx − wy > 0 if ¬c(x),¬c(y) (19)
In the case of conjunctive concepts, we can linearize these con-
ditional constraints without the introduction of new variables. We
illustrate with constraint (17), which is encoded as:

wx+b−wy > [
X

j≤n

I(¬x[j])+(1 − I(¬y[k]))] ∆↓ ∀k ≤ n

Here∆↓ < 0 is any lower bound on the max difference in utility of
any two outcomes. Each such constraint imposes (17) if the multi-
plier of∆↓ is zero, and is vacuous otherwise:

P

j≤n I(¬x[j]) = 0
only if c(x), and is at least 1 if ¬c(x); hence each such constraint
is vacuous if ¬c(x); and ¬c(y) iff I(¬y[k]) for some k ≤ n iff
the term (1 − I(¬y[k]) = 0 for some k. Thus one (or more) con-
straints of the form above are binding at zero iff c(x) and ¬c(y).
The other three conditional constraints can be encoded in a similar
fashion. These constraints will be imposed on the solution of the
max regret subproblem MR(·; W, V); they do not impact the mas-
ter problem or the validity of our constraint generation procedure.
Note that if concept membership of x or y is certain given the cur-
rent version space V , then only the relevant conditional constraints
are posted (and if both are certain, then only the original, single
linear constraint is posted).

Elicitation Strategies We now develop elicitation strategies for
simultaneous utility and feature uncertainty. There are a variety of
ways in which utility queries (comparison, bound), concept queries
(membership), and combined queries (CCM) can be interleaved,
and a number of ways to select appropriate queries of each type.
Here we consider only comparison queries for eliciting utility information—
these are often more effective than bound queries [6]—and mem-
bership queries for concepts (and the combination CCM).

For the choice of an appropriate comparison query, the current
solution strategy (CCSS) has been shown to be most effective in
previous work [4, 6, 7], so we adopt it here: given the minimax
optimal solution x∗

W,V and the adversarial witness xa, the user is
asked which of these two products is preferred.
To select membership queries, we examine two methods explored

in [5]. The first is a simple halving strategy adapted from standard
conjunctive concept learning [15]: we ask random memberships
queries until a positive example is found; then queries are asked
by negating literals one by one in the (unique) most specific con-
junctive hypothesis. Once a positive example is found, this con-
verges to the true conjunctive concept using a number of queries
linear in |X |.6 We need not identify the concept exactly however;
we terminate once minimax regret reaches an acceptable level. We
also explore the current solution strategy for membership queries
(MCSS): this selects a query based on which of the optimal product
x∗

W,V and/or witness xa satisfy the adversary’s choice of concept
ca in the current solution. If x∗

W,V ,xa ∈ ca, then CSS asks mem-
bership query xa; if x∗

W,V &∈ ca,xa ∈ ca, then CSS asks query
x∗

W,V ; otherwise CSS asks a query depending on the whether xa

is V -consistent (see [5] for further details and motivation). MCSS
will never as a membership query if the product in question is “cer-
tain” (i.e., has its concept status determined unambiguously by V).
Unlike the cases of pure utility or pure feature elicitation, in the

simultaneous case, wemust make a decision at each stage regarding
which type of query to ask, membership or comparison. In several
of the strategies below, we rely on our ability to decompose max
regret of the current solution into reward regret and concept regret.
Let (x∗,xa, w, c) be the current solution. Max regret of x∗ is rr +
cr (reward regret plus concept regret), where

rr = r(xa; w) − r(x∗; w); cr = wb(c(x
a) − c(x∗))

(we treat c(x) as a 0-1 indicator for concept satisfaction). Intu-
itively, rr tells us how much utility uncertainty is contributing to
the max regret of x∗, while cr does the same for concept uncer-
tainty. In our “interleaved” strategies below, we use these measures
to determine whether to ask a comparison (utility) query or a mem-
bership (concept) query, depending on which is larger. However,
we filter cr by the following condition. We say product x is V -
uncertain for version space V iff there are c, c′ ∈ V such that c(x)
and ¬c′(x); in other words there are V -consistent concepts that are
both satisfied and not satisfied by x. We consider asking a mem-
bership query (using cr as a criterion) only: if c(xa) and xa is
V -uncertain (so the adversary has gotten the concept bonus, but a
different, consistent concept would have prevented it); or if ¬c(x∗)
and x∗ is V -uncertain (so the optimal solution did not get the con-
cept bonus, but a different, consistent concept would have allowed
it). Unless one of these two conditions holds, refining the version
space cannot reduce the max regret of x∗.
Given this, we examine five query strategies. Two are phased

strategies that first attempt to learn the concept and then refine
the utility function. The first is dubbed Ph(H,CCSS) and initially
uses the halving algorithm (membership queries) to determine the
precise concept definition, and then uses CCSS (comparisons) to
refine utility function uncertainty. The second phased strategy is
Ph(MCSS,CCSS) and has the same form as the first, but uses MCSS
to generate membership queries. Of course, MCSS can “stall” if the
current solution is such that minimax optimal and adversarial prod-
ucts are V -certain. In such a case, a comparison query is asked. As
such, we can view Ph(MCSS,CCSS) as a form of interleaving (see
6If we are able to seed the process with an initial positive example,
we can accelerate the halving process rapidly, reducing it to a linear
number of queries.

of “local” options. Especially natural are comparison queries: a
user is asked if she prefers one product x to another y. Such com-
parisons can be localized to specific subsets of attributes as well,
depending on the form of the utility model [7], and can be general-
ized to choice sets over more than two products (as is common in
conjoint analysis [24]).
Responses to these and other common queries impose linear con-

straints onW when subjective features are absent. But the situation
becomes more complicated when feature uncertainty is added. If a
user states that she prefers x toy in response to a comparison query,
we can no longer impose simple constraints onW . The greater util-
ity of x could be due to its satisfaction of the subjective feature; but
we this cannot be reflected in the weight vector alone. This can
introduce complicating constraints that tieW and V together. One
simple solution to this problem is to ask concept queries whenever
one asks a comparison query. More precisely, if a user is asked
whether she prefers x or y, a membership query can be asked of
each outcome at the same time (e.g., “is x safe?”). This is rea-
sonably natural, since the assessment of preference likely involves
some cognitive assessment of the subjective feature in question.
We call such a query a combined comparison/membership (CCM)
query. This allows us to impose simple valid linear constraints;
e.g., if x is preferred and satisfies the concept, while y does not,
then we have wx + b − wy > 0.
However, if we want a pure comparison query without the corre-

sponding membership queries, we can still impose valid (and com-
plete) conditional constraints on W , based on the whether x,y
satisfy the concept, thus linkingW and V . Intuitively, we have the
following conditional constraints if x is preferred to y:

wx − wy > 0 if c(x), c(y) (16)
wx + b − wy > 0 if c(x),¬c(y) (17)
wx − wy − b > 0 if ¬c(x), c(y) (18)

wx − wy > 0 if ¬c(x),¬c(y) (19)
In the case of conjunctive concepts, we can linearize these con-
ditional constraints without the introduction of new variables. We
illustrate with constraint (17), which is encoded as:

wx+b−wy > [
X

j≤n

I(¬x[j])+(1 − I(¬y[k]))] ∆↓ ∀k ≤ n

Here∆↓ < 0 is any lower bound on the max difference in utility of
any two outcomes. Each such constraint imposes (17) if the multi-
plier of∆↓ is zero, and is vacuous otherwise:

P

j≤n I(¬x[j]) = 0
only if c(x), and is at least 1 if ¬c(x); hence each such constraint
is vacuous if ¬c(x); and ¬c(y) iff I(¬y[k]) for some k ≤ n iff
the term (1 − I(¬y[k]) = 0 for some k. Thus one (or more) con-
straints of the form above are binding at zero iff c(x) and ¬c(y).
The other three conditional constraints can be encoded in a similar
fashion. These constraints will be imposed on the solution of the
max regret subproblem MR(·; W, V); they do not impact the mas-
ter problem or the validity of our constraint generation procedure.
Note that if concept membership of x or y is certain given the cur-
rent version space V , then only the relevant conditional constraints
are posted (and if both are certain, then only the original, single
linear constraint is posted).

Elicitation Strategies We now develop elicitation strategies for
simultaneous utility and feature uncertainty. There are a variety of
ways in which utility queries (comparison, bound), concept queries
(membership), and combined queries (CCM) can be interleaved,
and a number of ways to select appropriate queries of each type.
Here we consider only comparison queries for eliciting utility information—
these are often more effective than bound queries [6]—and mem-
bership queries for concepts (and the combination CCM).

For the choice of an appropriate comparison query, the current
solution strategy (CCSS) has been shown to be most effective in
previous work [4, 6, 7], so we adopt it here: given the minimax
optimal solution x∗

W,V and the adversarial witness xa, the user is
asked which of these two products is preferred.
To select membership queries, we examine two methods explored

in [5]. The first is a simple halving strategy adapted from standard
conjunctive concept learning [15]: we ask random memberships
queries until a positive example is found; then queries are asked
by negating literals one by one in the (unique) most specific con-
junctive hypothesis. Once a positive example is found, this con-
verges to the true conjunctive concept using a number of queries
linear in |X |.6 We need not identify the concept exactly however;
we terminate once minimax regret reaches an acceptable level. We
also explore the current solution strategy for membership queries
(MCSS): this selects a query based on which of the optimal product
x∗

W,V and/or witness xa satisfy the adversary’s choice of concept
ca in the current solution. If x∗

W,V ,xa ∈ ca, then CSS asks mem-
bership query xa; if x∗

W,V &∈ ca,xa ∈ ca, then CSS asks query
x∗

W,V ; otherwise CSS asks a query depending on the whether xa

is V -consistent (see [5] for further details and motivation). MCSS
will never as a membership query if the product in question is “cer-
tain” (i.e., has its concept status determined unambiguously by V).
Unlike the cases of pure utility or pure feature elicitation, in the

simultaneous case, wemust make a decision at each stage regarding
which type of query to ask, membership or comparison. In several
of the strategies below, we rely on our ability to decompose max
regret of the current solution into reward regret and concept regret.
Let (x∗,xa, w, c) be the current solution. Max regret of x∗ is rr +
cr (reward regret plus concept regret), where

rr = r(xa; w) − r(x∗; w); cr = wb(c(x
a) − c(x∗))

(we treat c(x) as a 0-1 indicator for concept satisfaction). Intu-
itively, rr tells us how much utility uncertainty is contributing to
the max regret of x∗, while cr does the same for concept uncer-
tainty. In our “interleaved” strategies below, we use these measures
to determine whether to ask a comparison (utility) query or a mem-
bership (concept) query, depending on which is larger. However,
we filter cr by the following condition. We say product x is V -
uncertain for version space V iff there are c, c′ ∈ V such that c(x)
and ¬c′(x); in other words there are V -consistent concepts that are
both satisfied and not satisfied by x. We consider asking a mem-
bership query (using cr as a criterion) only: if c(xa) and xa is
V -uncertain (so the adversary has gotten the concept bonus, but a
different, consistent concept would have prevented it); or if ¬c(x∗)
and x∗ is V -uncertain (so the optimal solution did not get the con-
cept bonus, but a different, consistent concept would have allowed
it). Unless one of these two conditions holds, refining the version
space cannot reduce the max regret of x∗.
Given this, we examine five query strategies. Two are phased

strategies that first attempt to learn the concept and then refine
the utility function. The first is dubbed Ph(H,CCSS) and initially
uses the halving algorithm (membership queries) to determine the
precise concept definition, and then uses CCSS (comparisons) to
refine utility function uncertainty. The second phased strategy is
Ph(MCSS,CCSS) and has the same form as the first, but uses MCSS
to generate membership queries. Of course, MCSS can “stall” if the
current solution is such that minimax optimal and adversarial prod-
ucts are V -certain. In such a case, a comparison query is asked. As
such, we can view Ph(MCSS,CCSS) as a form of interleaving (see
6If we are able to seed the process with an initial positive example,
we can accelerate the halving process rapidly, reducing it to a linear
number of queries.

(2)

(4)

The number of constraints is quadratic in the number of attributes due to (4)

• Asks both comparison and membership queries about x* and x^w
• In general, counts as 3 queries

Combined Comparison Membership Strategy (CMM)

