
Tools for Exploration of Dynamic Models

in Object-oriented Design

Kurt N�rmark

Aalborg University

Denmark�

Abstract

In the scope of object-oriented design, a dynamic model is concerned with the
mutual interaction among objects. In addition, a dynamic model may deal with
creation and deletion of objects. As such, dynamic models are in contrast to static
models, which typically are concerned with classes and class relations. It is a central
hypothesis of this work that designing with concrete objects is easier and more direct
than designing with classes, especially in complicated design situations. In addition it
has been observed that dynamic models are much more di�cult to capture on a sheet
of paper than a static model, because of a mismatch between the medium (paper)
and the nature of the model (something being \alive"). In the paper we argue that
programs, formulated in an ordinary object-oriented programming language, cannot
be used for design purposes, because programming languages are concerned with too
many details, which are irrelevant for design purposes. Instead we propose a new
formalism, called Dynamo, for description of dynamic models together with a set of
tools that constitute a dynamic medium, via which the models can be explored.

1 Introduction

Modeling is a key activity in a program design process. In our context, a model is a
generalized description represented in a stylized fashion, which is used in analyzing or
explaining an existing or a forthcoming program. The models which are relevant for
program design purposes can roughly be divided into static models and dynamic models.

In this paper, the terms `static models' and `dynamic models' have a special, restricted
meaning. A static model is considered as a source program abstraction with special
emphasis on the structural relations among program components. A dynamic model is
considered as an abstraction of the program execution. Consequently, a dynamic model

�Department of Computer Science, Fredrik Bajers Vej 7E, 9220 Aalborg �, Denmark. Internet:
normark@iesd.auc.dk. | This research was supported in part by the Danish Natural Science Research
Council, grant no. 9400911.



deals with the concrete data objects, the interaction among the data objects, and the
creation and deletion of these during the program execution. Classes versus instances of
classes may serve as an example of the di�erence between the elements of the two models.
The distinction between static and dynamic models, considered as abstractions, will be
discussed further in section 2 below.

In this paper we will restrict the discussion of dynamic models to object-oriented design

situations. In general, a design is a plan for construction. An object-oriented design is a
design in which classes and methods play a key role in the static design models, and in
which objects and messages play a key role in the dynamic design models.

It is probably more di�cult to make a dynamic OOD model than a static OOD model.
The reason is that a dynamic model re
ects the actual dynamics in a program execution,
at some rather high abstraction level. Thus, the elements of a dynamic model may appear,
may modify themselves and other elements, and may �nally disappear as a function of
time. In comparison, a static OOD model is typically concerned with the structural
relations among classes, and there are no temporal aspects to be dealt with.

One of the ideas behind this work is that dynamic OOD models should be formulated
before the central static models, which involve classes and their mutual relations. It
is our hypothesis that programmers think in terms objects, object relations and object
interaction during the creative phases of the design process. Consequently, it is probably
a gain if the dynamic model can be created directly as one of the �rst models, at the
time where the designer is shaping the overall computational idea relative to the objects
at hand.

In the OOD literature dynamic models are typically expressed as various kinds of di-
agrams or graphs. However, it is not easy to embed information about the \temporal
dimension" of a dynamic model in diagrams without making the diagrams very com-
plicated. The complications both a�ect the producers and the readers of the diagrams.
Furthermore the complicated nature of the diagrams severely limits the size of the models
which can be handled in a realistic way.

It may be argued that programming languages should be used for descriptions of the
desired dynamics. Indeed, a program formulated in a programming language certainly
captures the dynamics which we want to model. However, using a programming language
the designer is forced to care about a great number of irrelevant details seen in relation
to the design task. It is important that the designer can formulate the dynamic model
in way which he or she feels is natural in relation to the creative line of thoughts in the
mind of the designer. A programming language is not directed towards such a purpose.

Based on the observations that both diagrammatic formalisms and programming lan-
guages are problematic for expressing dynamic OOD models, we will in this paper discuss
a new approach to dynamic modeling in an object-oriented design process. The approach
is based on a high-level formalism for expressing dynamic models together with a set of
tools for building, exploring and analyzing the models. In this paper we will only make a
rough sketch of the formalism and instead concentrate the e�orts on a discussion of the



program execution

abstraction of the 
program execution

program

abstraction of
structural program

aspects

dynamic OOD model

description of

description of

example of

static OOD model

abstraction of
process program

aspects

example of

Description of static
and structural aspects

Description of dynamic
process aspects

Computational 
processes

Figure 1: Abstractions of `program' and `program execution'.

tools.

The collection of tools may, together, be thought of as a dynamic medium which matches
the properties of the dynamic models. A program document or a diagram on a piece of
paper is `dead' in comparison to a model, which is represented as a data structure in a
computer-based tool. The latter may be presented and interpreted in numerous ways,
which support the designer in formulating \the right dynamic model" of the solution to
a problem, he or she is working on.

Related work can be found in the various books on object-oriented design [14, 3, 11,
7]. Seen in relation to earlier work presented at the Nordic Workshop on Programming
Environment Research the work on SCED by Koskimies et al. [8] as well as the work by
Salmela et al. [12] are similar to the work described in this paper. The main emphasis of
the SCED work is to synthesize state diagrams from object-interactions, as represented
by scenarios. Salmela's work is concerned with animation of object-oriented dynamic
models.

2 Dynamic OOD models

The main purpose of this section is to summarize the dynamic model, which we have
developed. In addition, we will discuss a number of dimensions along which it is possible
to characterize dynamic models in general.

At the outset we will clarify our view on dynamic models in contrast to static models.
This is done via the concepts and relations in �gure 1. The central concepts in the �gure



are `program' and `program execution'. In our view, a program is a description of the
program execution. Various abstractions can be de�ned on the program. Abstractions of
the structural program aspects are in general known as static models. In relation to this
paper, the abstraction of the program execution is of primary interest. The idea with this
abstraction is to elevate the actual program execution objects and mechanisms to a level,
which is fruitful and adequate for the object-oriented design task. A dynamic model is a
description of the abstracted program execution. 1

It is a central decision of our current work that a dynamic model is a scenario more than
a program-like description of a computational process. In this context, a scenario is \an
outline or a model of an expected or a supposed sequence of events"2. Consequently,
a dynamic model in our work is a �xed example of object interactions, which can be
executed in the mind of the designer. Execution in terms of simulation of the model on a
computer is not the goal of this work. With this understanding of dynamic models it is
seen that dynamic models are similar to use cases, as promoted by Jacobson et al. in [7].

2.1 Concepts of the Dynamo formalism

We will now turn to a summary of the central concepts in our dynamic OOD model,
which we call Dynamo. The concepts are objects, scenes, and messages.

An object is an identity carrying encapsulation of some program state. This is a de�nition
which is similar to the object concept from object-oriented programming languages. In
our current version of the design formalism, we do not deal directly with the state of
objects. Consequently, we do not describe the data �elds of an object. When new
objects are introduced it is possible to describe how the new objects are related to the
existing objects. The class of the objects are registered. The class of an object does not
exist as a description in the dynamic model. The sole purpose of classes is to relate the
set of objects, which are instances of the same class.

A scene is the set objects which are relevant for the current dynamic model. Objects enter
the scene via a mechanism called object provision. An object provision is a convenient and
somewhat magical mechanism which establish an object exactly at the time it is needed
by the designer. An object may actually have existed for a long time, but in the current
scenario it �rst becomes relevant at `object provision time'. Thus, it is seen that an object
provision claims the existence of an object in addition to a certain relationship with the
objects, which already have been brought onto the scene. As a simple and practical
convention, all objects on the scene have a unique name, through which they can be
referred to during a scenario. Other kinds of object references are deemed irrelevant for

1From �gure 1 it may be noticed that the abstraction of the process program aspects may be reached
both from the program and from the program execution. The reason is that a program (considered as
the source) contains both structural aspects and process aspects. Consequently, it is possible to focus on
the process aspects from an abstraction applied on the (source) program as well as via an abstraction
applied on the program execution.

2This de�nition is taken from the American Heritage Dictionary of the English Language.



design purposes.

We use the conventional message passing metaphor for object-interaction. A message
is passed from a sender object to a receiver object. At the top-level of the scenario,
there are no real sender object, although the \surrounding" may be seen as the sender.
In addition to the receiver, it is also possible to pass parameters. Parameters may be
existing objects (referred by their names), object provisions (objects of which we claim
the existence at parameter passing time), or informally given values (of basic types that
are not necessarily related to any class).

Passing a message M to a receiver R may cause the following actions in the model:

� Provision of a number of objects.

� Passing a number of messages from the receiver of M to other objects.

� Establishing the result of M (in terms of an existing object, an object provision, an
informally given value, or an informally described e�ect on the program state).

We do, in addition, consider the inclusion of explicit object deletion in our dynamic
model. This creates symmetry in relation to object provisions. In addition, we think it
may be a relevant design decision to state if and when an object becomes irrelevant.3

Although it is conceived that a message activates a method from the class of the receiver
object, the method concept is weak in our dynamic model. It is known to be the case that
the message passings in item 2 from above are located in one single method in the class
(say C) of the receiver object R. However, the same message to another object of the class
C, or the same message to R with other actual parameters, may cause another sequence
of messages from R (for instance because of selections with if-then-else's in the body of
the method). These observations are consequences of the scenario-based approach, which
we haved followed in our research until now. In conclusion, methods are weak in dynamic
models; Methods are parts of the static model.

2.2 Characterization of dynamic models

A dynamic model can be characterized using three independent dimensions:

1. The level of abstraction.

2. The means of expression.

3. The degree of formalization.

3It is generally accepted that implicit object deletion via use of some automatic memory manage-
ment scheme (such as garbage collection) is of great value at the programming level. But this does not
necessarily imply that object deletion is entirely irrelevant to the designer.



It is given a priori that the level of abstraction of the dynamic model is signi�cantly higher
than that of the actual program execution model. Overall, the level of abstraction should
�t the purpose of the task in which the model is used. In our case, the task is object-
oriented design. As a special twist, which also a�ects the desired level of abstraction, we
prefer to make dynamic models prior to the static class model.

As mentioned in the introduction, the diagrammatic means of expression dominate in the
OOD literature, also with respect to description of dynamic models. This is a contrast
to the programming phase of the development process in which the textual means of
expression dominates. Our approach in this work is to leave the decisions about `the
means of expressions' open. This is achieved by working on abstract representations of
the model, which may be presented either as a diagram or as a piece of text. We come
back to this discussion in section 3 of this paper.

On the one hand, a formal description lends itself towards a higher degree of precision
than does an informal description. On the other hand, an informal description is often
better suited to enhance the intuitive understanding of the model. Both precision and
intuition are important for our endeavor. In particular we believe that the designer need
to document the intuitive aspects of the dynamic model, in order to promote a human,
common sense understanding of the design task at hand. Therefore, we encourage the
designer to give intuitive explanations in natural, written language, and we augment the
representation of the dynamic model with these explanations. As a consequence we go
for a dynamic model in which both formal and informal aspects are present. In some
situations this leads to redundancy.

3 Tool support of Dynamo

In our context, a tool is an executable program that supports some well-de�ned task, and
which manifests itself to the user via a concrete interface (windows, menus, and the like).
As mentioned in the introduction to the paper, we are interested in tools which support
the tasks of building, exploring and analyzing dynamic models. All together we think
of the tools as a dynamic medium through which dynamic models may be handled in a
better way than constructing and reading diagrams on a sheet of paper.

At the outset, it may be relevant to ask if and how the set of tools for dynamic modeling
is di�erent from a tool set, which constitutes a programming environment (or a similar
environment). After all, we need tools for the rather well-known and common activities
such as editing, checking, interpretation, and administration. The answer is that there
are both di�erences and similarities. The main di�erence is the nature of the model
exploration tool, which is unique for our purpose, and central for the approach. As a
similarity, the proposed tool set may be seen as a structure-oriented environment in the
tradition of systems such as Mentor [5], The Cornell Program Synthesizer [13], Gandalf
[6], PSG, [1], and IPSEN [4]. We will now describe the characteristics of the three tools
in separation. Afterwards we will address the issue of integration. Finally we will brie
y



discuss the underlying tool representation.

3.1 Model building

Model building is an editing activity. The purpose of the model builder is to support
the designer in creating and modifying a dynamic model. To the extent that a dynamic
model can be seen as expressions in a formal language, the well-known range of editing
techniques can be applied. In the one extreme, the model can be formulated as text,
which conforms to the language, using a text editor. Let us call this the textual-linguistic

approach. In the other extreme a model may be formulated using an interaction, which is
customized especially to this particular task. The result of this interaction is an internal
data structure which represents the model. Of that reason we call this the interaction-

datastructure approach.

Of the following reasons, the textual-linguistic approach is not attractive in our setting:

1. Due to the requirements of both a formal and an informal element of the language
(see section 2) it is attractive to be able to emphasize either the one or the other
of these elements in a description. At a given time it may be \too much" to face
the full degree of redundancy in the model.

2. By using the textual-linguistic approach we are locking ourselves to one particular
means of expression (the textual one). As discussed in section 2 we want to be open
towards di�erent means of expressions, such as graphs, diagrams, browsers, as well
as text. The interaction-datastructure approach supports this well.

3. The interaction-datastructure approach lends itself better towards a tight integra-
tion among the model building, exploration and analysis activities than does the
textual-linguistic approach. The reason is that the underlying data structures easily
can be shared among the tools in the tool set. If we base ourselves on the textual-
linguistic approach, some incremental processing of the text is necessary in order
to obtain a satisfactory integration with the other activities.

3.2 Model exploration

Model exploration is the central and unique activity of this work. The purpose of `explor-
ing' is to consolidate the understanding of the dynamic behavior of the object system.
It may, to some degree, be possible to gain such an understanding by simply reading the
model (using some linguistic or diagrammatic presentation). However, we do not think
that \simple reading" is enough. We have a number of proposals which we hypothe-
size complements and enhance the designer's understanding of the object system and its
temporal development.



1. The �rst is animation of the interaction among the set of objects. The animation
may take several forms. The simple form is a textual tracing, during which the
mutual interaction among objects is presented in a structured manner. As a much
more elaborate proposal, the interaction may be shown using an evolving graph
(along the lines proposed in [12]), where the nodes are object, and where the edges
are messages. The evolution of the graph re
ects the temporal sequence of object
births, object deaths, and message passings.

2. In the second, which may be called model querying, the designer retrieves informa-
tion about the model by asking questions. Typical questions may be \which objects
are alive now?"; \what is the interaction history of object X?"; And \which classes
of objects are represented on the scene now?" Some answers may be easily retrieved
from the data structure which represents the model. Other answers require a more
careful analysis of the model, and as such we see the need for integration with the
model analysis tools.

3. The third and �nal proposal is interaction browsing together with scene browsing.
In this context a browser is a tool that allows the user to explore a hierarchical
structure in a disciplined manner [9]. The interaction browser presents the object
interaction in a concise and structural form which allows the designer to dive into
sub-interactions if he or she wants to. Each interaction is presented with some \con-
text" in terms of the sender object and the sub-interactions. The scene browser
presents the set of objects on the scene relative to a given point in the interaction.
On each object, shown in the scene browser, it is possible to ask for further in-
formation, such as the intuitive explanation of the role of object in the dynamic
model.

3.3 Model analysis

Model analysis is concerned with extraction of derived properties from the dynamic model.
The derived properties need to be computed based on the information which is directly
available in the model. As discussed above, we have seen that the model explorer depends
on information which stems from the model analysis. In addition the model analysis tool
is used to check for inconsistencies in the model and to extract a partial static model
from the dynamic model. Recall, that in our context a static model is concerned with
the structural relationships among the classes in an object-oriented design, whereas the
dynamic model is concerned with the interaction-oriented relationships among concrete
objects. The extraction of static model information from the dynamic model information
is based on the dualities between objects and classes, messages and methods, and between
aggregation of objects and aggregation of classes.

The key to the generation of a static model from the dynamic model is that all objects
are augmented with the class (in terms of a class name), to which they belong. The sole
purpose of this is to identify sets of objects with common properties (protocols). If, for
instance, object O1 has properties p1, p2 and p3 and object O2 has properties p2 and p4,



and if, in addition, O1 and O2 belong to the same class C, then we can conclude that class
C has the properties p1, p2, p3, and p4. In that way be can collect properties of classes
by collecting properties of objects, which are augmented by the same class. The result is
a partial static model. The model is partial because of the following observations:

1. We cannot be sure that the scenarios, on which the dynamic model is based, cover
the total number of properties of a class.

2. There are some important, structural relationships among classes which cannot
easily be derived from the instances of the classes, namely the specialization-
generalization relationships.

The extracted elements of a static model may be pretty printed with respect to a given
programming language, and may as such also serve as a rough starting point for the
forthcoming implementation process.

3.4 Integration issues

As already mentioned, the integration among the model builder, explorer and analyzer is
very important for the success of the environment. During model exploration it is natural
to modify og extend the model if and when a need for that is identi�ed; This is model
building. Similarly, the model exploration depends on information which is the result of
an analysis rather than just direct presentation of information from the underlying model
representation.

From a conceptual point of view we think that the entire dynamic medium (or system)
is best understood as a number of separate, but tightly integrated tools. From an imple-
mentation point to of view the three tools presented above may rather be realized as one
single tool.

We represent a dynamic model as a data structure which is quite similar to an abstract
syntax tree (an AST). Each node in the tree is an instance of a class in the implementation
language, which for the current prototype is CLOS [2]. The generalization-specialization
hierarchy among the classes make up the alternation structure in the underlying abstract
grammar. The non-abstract classes aggregate grammatical concepts, and as such they
make up the constructors of the abstract grammar. Seen in this way, we can talk about a
dynamic modeling language, which we grammatically have de�ned at the abstract level.

We have not, until now, de�ned any concrete, linguistic presentation of models in the dy-
namic modeling language. As discussed above, we are working with non-textual-linguistic
means of expressions, via browsers. However, with the purpose of saving models on �les,
we have de�ned an ad hoc \constructor format", in which a model data structure (an
AST) is linearized, and in which each node is represented as a constructor expression.
When evaluated, such a constructor expression directly creates the internal data struc-
ture.



4 Conclusions and Status

The main contribution of this work is a formalism for de�nition of dynamic OOD models
together with a dynamic medium, through which to work with such models. From a
somewhat traditional point of view, the formalism may be thought of a dynamic modeling
language. However, we have only formulated the language at a rather abstract level,
corresponding to that of abstract syntax trees. The dynamic medium is realized by
set of closely integrated tools, the main purpose of which is to support exploration and
re�nement of dynamic models. More information can be found in [10].

As of May 1996 we are in the process of developing a set of browsers, via which we can
build, explore and analyze dynamic models (in terms of a set of related scenarios).

References

[1] R. Bahlke and G. Snelting. The psg system: From formal language de�nitions to interactive
programming environments. ACM Transactions on Programming Languages and Systems,
8(4):547{576, 1986.

[2] Daniel G. Bobrow, Linda G. DeMichiel, Richard P. Gabriel, Sonay E. Keene, Gregor Kiczales,
and David A. Moon. Common Lisp object system speci�cation X3J13 document 88-002R.
Sigplan Notices, 23(Special Issue), September 1988.

[3] Grady Booch. Object-oriented analysis and design with applications, second edition. The
Benjamin/Cummings Publishing Company Inc., 1994.

[4] G. Engels, C. Lewerenz, M. Nagl, W. Sch�afer, and A. Sch�urr. Building integrated soft-
ware development environments part I: Tool speci�cation. ACM Transaction on Software

Engineering and Methodology, 1(2):135{167, April 1992.

[5] V�eronique Donzeau-Gouge, G�erard Huet, Gilles Kahn, and Bernard Lang. Programming
environments based on structured editors: The mentor experience. Technical Report 26, IN-
RIA, July 1980. Also in Barstow, Shrobe, and Sandewall (editors) \Interactive Programming
Environments" McGraw-Hill Book Company.

[6] A.N. Habermann and D. Notkin. Gandalf: Software development environments. IEEE

Transaction on Software Engineering, pages 1117{1127, December 1986.

[7] Ivar Jacobson, Magnus Christerson, Patrik Jonsson, and Gunnar Overgaard. Object-Oriented
Software Engineering { A Use Case Driven Approach. Addison-Wesley Publishing Company
and ACM Press, 1992.

[8] Kai Koskimies, Tatu M�annist�a, Tarja Syst�a, and Jyrki Tuomi. SCED - an environment for
dynamic modeling in object-oriented software construction. In Boris Magnusson et al., editor,
Proceedings of the Nordic Workshop on Programming Environment Research, NWPER'94,

Lund, pages 217{230, 1994.

[9] Kurt N�rmark. Programming environments|concepts, architectures, and tools. Technical
Report R-89-5, Department of Mathematics and Computer Science, Institute of Electronic
Systems, Aalborg University, March 1989.



[10] Kurt N�rmark. Dynamic models in object-oriented design. Technical Report R-96-2005,
Department of Mathematics and Computer Science, Institute of Electronic Systems, Aalborg
University, February 1996.

[11] James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy, and William
Lorensen. Object-oriented Modeling and Design. Prentice-Hall International, 1991.

[12] Marko Salmela, Marko Heikkinen, Petri Pulli, and Reijo Savola. A visualisation schema for
dynamic object-oriented models of real-time software. In Boris Magnusson et al., editor,
Proceedings of the Nordic Workshop on Programming Environment Research, NWPER'94,

Lund, pages 73{86, 1994.

[13] Tim Teitelbaum and Thomas Reps. The Cornell Program Synthesizer: A syntax-directed
programming environment. Communications of the ACM, 24(9):563{573, September 1981.
Also in Barstow, Shrobe, and Sandewall (editors) \Interactive Programming Environments"
McGraw-Hill Book Company.

[14] Kim Walden and Jean-Marc Nerson. Seamless Object-Oriented Software Architecture - Anal-

ysis and Design of Reliable Systems. Prentice Hall, 1995.


