
Partial Knowledge in Membrane Systems.

A Logical Approach

Matteo Cavaliere1, Radu Mardare,2

1 Microsoft Research - University of Trento,
Centre for Computational and Systems Biology, Trento, Italy

matteo.cavaliere@msr-unitn.unitn.it
2 D.I.T, University of Trento

Trento, Italy
mardare@dit.unitn.it

Abstract. We propose a logic for specifying and proving properties of
membrane systems. The main idea is to approach a membrane system
by using the “point of view” of an external observer. Observers (as epis-
temic agents) accumulate their knowledge from the partial information
they collect by observing subparts of the system and by applying logical
reasoning to this information. We provide a formal framework to com-
bine and interpret distributed knowledge in order to recover the complete
knowledge about a membrane system. The proposed logic can be used
to model biological situations where information concerning parts of the
biological system is missing or incomplete.

1 Motivations

Abstracted as multi-agent system, a biological system reflects interactive, con-
current and distributed behaviors and, in general, the complex evolutions of
biological systems. The success in dealing with this complexity depends on the
mathematical model chosen as abstraction of the system.

Consider, for example, the immune system [2]. This is constituted by a net-
work of cells, tissues and organs that work together to defend the body against
attacks by foreign invaders - microbes, germs, bacteria, viruses, parasites, etc.
The immune system’s job is to keep them out or, failing that, to seek out and
destroy them. The immune system functions due to an elaborate and dynamic
communications network. Millions of cells, organized into sets and subsets, gather
in clouds swarming around a hive and pass information back and forth.

Suppose now that we are interested in modelling the interaction of our body
with a given virus. Excepting the immune system, our body contains also other
subsystems, but we can decide that, for the given situation, all the other parts
are meaningless. So we decide to ignore them. For instance, if we consider the
case in which the virus is already present in our body, the first approximation
of the biological reality will consider a main system (our body) in which are
present two subsystems - the virus and the immune system. Going deeper, the



first interaction between the two subsystems involves the innate immune system,
which is just a subsystem of the immune system comprised of hereditary com-
ponents that provide an immediate “first-line” of defense to continuously ward
off pathogens. This subsystem is able to annihilate “well-known” viruses. If this
is the real situation, then modelling only the innate immune system in relation
with the virus is enough for comprehending the biological phenomenon. But if
the virus is unknown, then we might need to go deeper with modelling and, in
addition to the innate immune system, to model also phagocytic cells. These are
cells that represents the “second-line” of defence for our body. They can analyze
unknown entities, destroy viruses and learn the structures of the destroyed enti-
ties. In particular, the immune system is able to design special cells for fighting
with peculiar types of viruses. Hence, on this level, the modelling have to be
more specific representing also other subsystems of the immune system.

Depending on the complexity of the biological properties we want to consider,
we can go as deep as necessary with representing the biological entities involved.
More complex models provide more accurate information. Still, as the costs of
modelling and simulation grows with complexity of the model, we have to find
the right level of abstraction that gives, with acceptable costs, the information
we are looking for. Observe that in biology, as in all the empirical sciences,
we cannot hope to reach the level of having complete information concerning a
biological phenomenon. Thus, no matter how complex is the model we choose,
there exists always properties requiring a bigger complexity.

In other words, we always work with partial (observed) knowledge about bio-
logical systems and based on this incomplete information we model or simulate
biological phenomena. In this paper we show how it is possible to manage in-
complete information concerning membrane systems. The work done here can
be seen as related to [9] where a formal observer has been introduced to investi-
gate the formal behavior of a membrane system. However in [9] the observer was
mainly used to extend the computing power of the observed device. In this pa-
per, the observer is an epistemic agent able to compute knowledge and is used to
analyze situations in which the knowledge about the observed system is partial,
incomplete or missing.

2 Formal Language Preliminaries

Membrane systems are based on formal language theory and multiset rewriting.
We now briefly recall the basic theoretical notions used in this paper. For more
details the reader can consult standard books, such as [10] and the corresponding
chapters of the handbook [18].

Given the set A we denote by |A| its cardinality and by ∅ the empty set. We
denote by N and by R the set of natural and real numbers, respectively.

As usual, an alphabet V is a finite set of symbols. By V ∗ we denote the set
of all strings over V . By V + we denote the set of all strings over V excluding
the empty string. The empty string is denoted by λ. The length of a string v is
denoted by |v|. The concatenation of two strings u, v ∈ V ∗ is written uv.



A multiset is a set where each element may have a multiplicity. Formally,
a multiset over a set V is a mapM : V → N, whereM(a) denotes the multiplicity
of the symbol a ∈ V in the multiset M .

For multisets M and M ′ over V , we say that M is included in M ′ if M(a) ≤
M ′(a) for all a ∈ V . Every multiset includes the empty multiset, defined as M
where M(a) = 0 for all a ∈ V .

The sum of multisets M and M ′ over V is written as the multiset (M +M ′),
defined by (M +M ′)(a) = M(a) +M ′(a) for all a ∈ V . The difference between
M and M ′ is written as (M−M ′) and defined by (M−M ′)(a) = max{0,M(a)−
M ′(a)} for all a ∈ V . We also say that (M + M ′) is obtained by adding M to
M ′ (or viceversa) while (M −M ′) is obtained by removing M ′ from M . For
example, given the multisets M = {a, b, b, b} and M ′ = {b, b}, we can say that
M ′ is included inM , that (M+M ′) = {a, b, b, b, b, b} and that (M−M ′) = {a, b}.

A multiset M can be expressed in the forms (a,M(a)) or aM(a), for all
a ∈ V . If the set V is finite, e.g. V = {a1, . . . , an}, then the multiset M can be
explicitly described as {(a1,M(a1)), (a2,M(a2)), . . . , (an,M(an))}. The support
of a multiset M is defined as the set supp(M) = {a ∈ V |M(a) > 0}. A multiset
is empty (hence finite) when its support is empty (also finite).

A compact notation can be used for finite multisets: if M = {(a1,M(a1)),
(a2,M(a2)), . . . , (an,M(an))} is a multiset of finite support, then the string
w = a

M(a1)
1 a

M(a2)
2 . . . a

M(an)
n (and all its permutations) precisely identify the

symbols in M and their multiplicities. Hence, given a string w ∈ V ∗, we can
say that it identifies a finite multiset over V , written as M(w), where M(w) =
{a ∈ V | (a, |w|a)}. For instance, the string bab represents the multiset M(w) =
{(a, 1), (b, 2)}, that is the multiset {a, b, b}. The empty multiset is represented
by the empty string λ.

3 Membrane Systems with Symbol-Objects

We recall the basic notions of membrane systems (also called P systems) with
symbol-objects. The reader can find further details in the monograph [3]. An
updated bibliography of the field can be found at the P systems web-page [1].

Definition 1 (Membrane system with symbol-objects). Given a finite set
of objects O and an infinite set of labels Lab, we consider the following family
of constructs

P = {(µ,wj1 , wj2 , · · · , wjm
, Rj1 , Rj2 , · · · , Rjm

) | ji ∈ Lab, for i = 1..m}.

where

– µ is a membrane structure consisting of m membranes arranged in an hier-
archical structure enclosed in a main membrane, called skin membrane. The
skin membrane separates the system from the surrounding environment; the
membranes (and hence the regions that they delimit/enclose) are injectively
labeled over LabΠ = {j1, j2, · · · , jm} ⊂ Lab; we convey to label by j1 the
skin membrane.



– wj1 , wj2 , · · · , wjm
are strings that represents multisets over O associated with

regions j1, j2, · · · , jm, respectively.
– Rj1 , Rj2 , · · · , Rjm

are finite sets of evolution rules over O, associated to re-
gions j1, j2, · · · , jm, respectively. An evolution rule is of the form u → v,
where u is a string over O and v is a string over {ahere, aout | a ∈ O}∪{ainI

|
a ∈ O, I ⊆ Lab}. The symbols here, out, inI with I ⊆ Lab are called target
indications. To simplify the notation the target indication here is omitted.

An element Π = (µ,wj1 , wj2 , · · · , wjm
, Rj1 , Rj2 , · · · , Rjm

) ∈ P is called mem-
brane system with symbol-objects, of degree m. We denote by 0 the membrane
system of degree 0. We call atomic membrane system a system a system of de-
gree 1 having either the set of rules empty or the multiset of objects empty; if its
unique membrane (which is also the skin membrane) is labelled by i and Ri = ∅
while its multiset is wi ∈ O∗, then we denote it by [wi]i; if wi = λ and Ri 6= ∅
then we denote it by [Ri]i; if Ri = ∅ and wi = λ we convey to denote it by [0]i.

Given a membrane system Π, an evolution of Π is a sequence of membrane
systems 〈Π0,Π1,Π2, · · · 〉 where Π0 = Π and, for i ≥ 0, each Πi+1 is obtained
by applying once one of the associated evolution rules in one of the regions of
Πi. Rule and region are chosen in a non-deterministic manner. The remainder
of the system Πi (objects not involved in the application of the rule, set of rules,
membrane structure, labelling of the membranes) is left unchanged in Πi+1.

The passage from Πi to Πi+1 using the rule r in region j of Πi is called
transition and is denoted by Πi

rj−→ Πi+1. 1

The application of an evolution rule r : u → v ∈ Rj in the region j ∈ LabΠ
means to remove the multiset of objects identified by u from region j, and to
add the objects specified by the multiset v, in the regions specified by the target
indications associated to each object in v. In particular, if v contains an object
a with target indication here, then the object a will be placed in the region j
where the evolution rule has been applied. If v contains an object a with target
indication out, then the object a will be moved to the region immediately outside
the region j (this can be the environment if the region where the rule has been
applied is the skin membrane). If v contains an object a with target indication
inI , with I ⊆ Lab, then the object a is moved from the region j and placed in
a non-deterministic way into a region i ∈ I (this can be done only if such region
i ∈ I is immediately inside region j; otherwise the evolution rule u → v cannot
be applied).

We call contents of membrane j in Π, the multiset of objects and the mem-
branes (together with their contents) contained in region j of Π.

1 The reader familiar with membrane systems can notice that we use a sequential
semantics: at each step only a unique rule is executed once. Actually the logic pro-
posed in this paper is very general and can be extended easily to other semantics,
e.g., the maximal parallel one.



Definition 2 (Membrane composition).
Let Π = (µ,wj1 , wj2 , · · · , wjm

, Rj1 , Rj2 , · · · , Rjm
) be a membrane system and

i ∈ Lab− LabΠ .
We denote by [Π]i the membrane system

Π ′ = (µ′, wk1 , wk2 , · · · , wkm+1 , Rk1 , Rk2 , · · · , Rkm+1)

such that

– µ′ is µ enclosed into an external membrane labelled by i; the labelling of the
membranes of µ is preserved in µ′;

– k1 = i and ks = js−1 for s = 2..m + 1; consequently wks = wjs−1 and
Rks = Rjs−1 ;

– wk1 = λ, Rk1 = ∅.

Example 1. Consider the membrane system Π defined by

µ = [ [ ]2 ]1;
R1 = {a→ b};
R2 = {b→ c};
w1 = b;
w2 = a.

Then [Π]3 is the system Π ′ defined by

µ′ = [ [ [ ]2 ]1 ]3;
R′

1 = R1 = {a→ b};
R′

2 = R2 = {b→ c};
R′

3 = ∅;
w′

1 = w1 = b;
w′

2 = w2 = a;
w′

3 = λ.

Definition 3 (Parallel composition).
Let Π = (µ, uj1 , uj2 , · · · , ujm , Rj1 , Rj2 , · · · , Rjm) and

Π ′ = (µ′, vk1 , vk2 , · · · , vkn
, Rk1 , Rk2 , · · · , Rkn

) be two membrane systems such
that j1 = k1 and LabΠ ∩ LabΠ′ = {j1}. We call parallel composition of the two
systems, denoted by Π|Π ′, the membrane system

Π ′′ = (µ′′, wl1 , wl2 , · · · , wlm+n−1 , Rl1 , Rl2 , · · · , Rlm+n−1)

defined by:

– µ′′ is obtained by enclosing into a common external membrane the contents
of the skin membranes of µ and µ′;



– in µ′′ the labelling of the membranes in µ and in µ′ is preserved; consequently
the skin membrane of Π ′′ is labelled by l1 = j1 = k1;

– wl1 = uj1vk1 , Rl1 = Rj1 ∪Rk1 .
2

The intuition behind the parallel composition operator is that it can be used
to divide an entire membrane system in subsystems, where each subsystem can
be recognized/understood by a certain external observer.

Example 2. Consider the membrane systems

Π : Π ′ :
µ = [ [ ]2 [ ]3 ]1 µ′ = [ [ [ ]5 ]4 ]1
w1 = ab w1 = ee
w2 = cd w4 = ccd
w3 = aa w5 = a
R1 = {a→ b, a→ c} R1 = {a→ b, a→ d}
R2 = {cd→ a} R4 = {d→ c}
R3 = {a→ b, a→ d} R5 = {a→ b}

Then Π|Π ′ is the system Π ′′ defined as

µ′′ = [ [ ]2 [ ]3 [ [ ]5 ]4 ]1
w1 = eeab

w2 = cd

w3 = aa

w4 = ccd

w5 = a

R1 = {a→ b, a→ c, a→ d}
R2 = {cd→ a}
R3 = {a→ b, a→ d}
R4 = {d→ c}
R5 = {a→ b}.

Let denote by Pi the class of membrane systems having the skin membrane
labelled by i. Then it is easy to see that the following theorem holds.

Theorem 1. (Pi, |, [0]i) is an Abelian monoid.

Also the following theorem can be easily proved.

Theorem 2. Any membrane system can be composed, by iterating parallel and
membrane composition, starting from atomic membrane systems.
2 The definition is correct as LabΠ ∩LabΠ′ = {j1}. Notice that, since the labelling of

the membranes is preserved, we have that for s 6= 1 Rls and wls = uks (wls = vks)
are preserved as in the original system Π (Π ′, respectively)



Example 3. Consider the membrane system Π presented in Example 2.
The system Π can be obtained as

[ [cd]2|[R2]2 ]1 | [ [aa]3|[R3]3 ]1 | [ab]1 | [R1]1

with R1, R2 and R3 as in Π. Clearly [cd]2, [aa]3, [ab]1, [R1]1, [R2]2, [R3]3 are
atomic membrane systems.

Partial Information in Membrane Systems

We want to propose a formal way of playing with partial information about a
(membrane) system in order to decide some global properties. The idea is to
formally describe open systems. An open system for an observer is a system
formed by a known subsystem and an unknown (opened) part about which the
observer does not know anything. So if the observer knows a subsystem S1 of a
bigger system S1|S2, then the observer considers as entire system, any structure
of type S1|S3, for any possible system S3. Hence, the properties that the observer
knows about the entire system are the properties that systems “like” S1|S2,
S1|S3, etc. have in common.

Consider again the example, presented in the Introduction, where a virus
attacks our body. We have decided to model a relevant part of immune system,
say I, in relation with the virus v. Hence the model of a body that has been
penetrated by a virus is body = I|v|S, where S denotes the rest of the body (we
have not considered to model the rest of the body in details since the system I
is enough for comprehending the interaction with the virus). Suppose now that
the properties we try to specify do not concern only the subsystem I|v (the one
we have considered) but the whole body I|v|S.

Can we sustain that each property of the system I|v can be stated about the
whole body I|v|S?

For correctly answering to this question, we propose a logic to play with
partial information. Consider a complex biological system about which we have
only partial information. This information is collected by some observers placed
in different points of the system. Each observer analyzes a subsystem. Our logic
develops the framework needed to combine the knowledge of these observers
such that is possible to derive interesting properties about the whole system, even
without having complete information about it. Playing with observers might cost
less then fully investigating the system and it might provide enough information
for deciding on the properties we are interested in. All depends on how we
place the observers and how we combine their knowledge in deriving complex
properties.

Formally, we propose a logic developed in dynamic-epistemic paradigm [11]
and enriched with operators from spatial logics [5, 4, 7, 8]. We call it dynamic
epistemic spatial logic. The syntax allows to express open systems and the knowl-
edge of observers. By combining the knowledge of different observers we can
specify and verify complex properties about the whole system without having
complete knowledge about it.



In related papers [15, 16, 14] it has been proposed Hilbert-style axiomatic
systems for different such logics, and it has been proved that they are decidable
against a semantics based on process algebra, even in the cases for which the
classical spatial logics have been proved to be undecidable [6].

4 Playing with Partial Information

In this section we will show how, playing with partial information about a system,
we can derive properties of the whole system. For this we reconsider a classi-
cal example used in epistemic reasoning [11] adapted for a biologically inspired
situation.

Consider a biological system S composed by four disjoint subsystems S =
S1|S2|S3|S4. In Figure 1 there are four cells S1, S2, S3 and S4. Each cell contains a
vacuole that can be either normal, having an oval shape as in S3, S4, or abnormal
having a non-circular shape as the vacuoles of S1 and S2. Suppose, in addition,
that the system is analyzed by four observers, each observer having access to
only a subpart of S. Thus observer O1 can see the subsystem S2|S3|S4, O2 the
subsystem S3|S4|S1, O3 can see the subsystem S4|S1|S2 and observer O4 sees
S1|S2|S3. Each observer has a display used for making public announcements.

Fig.1: The system S Fig.2: The perspective of O1

The observers know that the system S contains abnormal vacuoles and each
observer tries to compute the exact number of them and their positions in the
system. In doing this the observers do not communicate but only witness the
public announcements. Each observer displays 0 until it knows the exact num-
ber and positions of abnormal vacuoles, moment in which it switches to 1. In
addition, the observers are synchronized by a clock that counts each step of
computation. Hence, after each ”tic“ the observer has to evaluate its knowledge
and to decide if its display remains on 0 or switches to 1. Thus each observer
computes information about the whole system by using the partial information
it possesses and by evaluating the knowledge of the other observers (by reading
their displays). If an observer is able to decide the correct number of abnormal



vacuoles and their exact positions in the system, then it succeeded to do this with
a lower cost then the cost needed for fully investigating the system. Hereafter
we show that such a deduction is possible.

Consider that the real state of the system is the one in Figure 1. And suppose
that we can control only the observer O1. As O1 sees the subsystem S2|S3|S4,
it sees an abnormal vacuole in subsystem S2 and normal vacuoles in S3 and
S4; in Figure 2 it is represented the perspective of O1. But it does not know if
the system S1 has a normal or an abnormal vacuole. For O1 both situations are
equally possible. Hence, after the first round of computation the display of O1

remains to 0. As it concerns observer O2, it sees an abnormal vacuole, in S1, but
it doesn’t know what is in S2, thus, after the first round, it will show 0 too.

Fig.3: A hypothetical perspective of O2 Fig.4: The real perspective of O2

It starts the second round of computation. We come back to our observer,
O1. The observer has seen that, after the first round, the observer O2 has not
succeed to understand the situation (as O2 shows 0 on its display). If the system
S1 would contain a normal vacuole then in the first round O2 would have seen
only normal vacuoles, as in Figure 3. O2 also knows that there is at least one
abnormal vacuole. Hence, if this was the case, O2 had enough information to
decide, in the first round, that the only abnormal vacuole of the system is in S2.
Consequently 1 had to appear on its display. But this was not the case (O1 can
see that by looking to the display of O2). This means that what O2 observed
was the situation presented in Figure 4. Therefore it is possible to decide that
the real situation of the system is the one with an abnormal vacuole in S1. Thus
using only O1 it is possible to compute the real configuration of the system and
then O1 will display 1. The example works similarly in more complex situations.

Observe the advantages of this analysis: using only the partial information
available to O1 about the system S and judging the behavior of the other ob-
servers, we were able to compute the real configuration of the system. The ob-
servers do not exchange information about S, but only about their level of under-
standing (their observations of) S. The rest can be computed. If each subsystem
is very complex, and usually this is the case in biology, then the complete infor-
mation about the system can be larger then an observer can store or manipulate.



Note also that the observers do not need a central unit for organizing their
information. Each observer organizes its own information and makes public an-
nouncements about its level of knowledge. They work simultaneously in a dis-
tributed network and only playing with their partial information about S and
with the information about the state of the network are able to derive overall
properties of the system.

The approach fits well with the real situation of biological systems. We work
always with partial information which are collected by some observers as re-
sults of “measuring” different aspects of a biological phenomena. Sometimes
these different ”faces” of the same phenomena cannot be integrated in the same
mathematical model, or seeking for a property might involve evaluation of dif-
ferent models. For such situations, a formalized way for automatically reasoning,
as in the previous example, might help. Hereafter we introduce a logic designed
for this purpose.

5 A Logic of Partial Information

As pointed in the previous section, the role of observers in understanding and
manipulating biological information is significant. We present a logic of observers,
called dynamic epistemic spatial logic [15, 17, 16, 14], developed for specifying
and model-checking properties of multi-agent systems. It can be successfully
applied for analyzing membrane systems. Our logic proposes a formal way of
combining and analyzing the information provided by different observers about
the same biological phenomena.

Our logic can be related with spatial logics [4, 5, 7, 8]. For a detailed presen-
tation of it and for a Hilbert-style axiomatization the reader is referred to [15,
16, 14].

5.1 The Syntax of LObs

Suppose that we have a class Obs of observers ranged over by A,B,C. We
enrich the language of propositional logic with knowledge operators indexed by
observers KA. A statement like KAφ is read “observer A knows φ”. Then we
can compose more complex epistemic statements. Thus “observer A1 knows that
observer A2 knows φ” is formalized by KA1KA2φ. A formula like KAφ∧KA(φ→
ψ) → KAψ is interpreted as “if observer A knows φ and φ→ ψ then the observer
knows ψ”.

In addition to these operators we add some spatial operators meant to de-
scribe the spatial distribution of the subsystems. Anticipating the semantics, we
present the intuition behind these operators.

Formula 0 is meant to characterize the trivial membrane system 0 that might
be ignored in a complex situation3.

3 Some syntaxes of classical logic use 0 for denoting false. This is not the case here.
We use ⊥ to denote false.



Inspired by spatial logics [5, 7, 8], we introduce the parallel operator φ ‖ ψ
meant to express the situation in which our system can be decomposed in two
(parallel) subsystems, one satisfying φ and the other one satisfying ψ.

> will be satisfied by any system, hence it expresses consistency, ”true“. The
role of this element of syntax is essential in expressing open systems. As > is a
property that characterizes any system, φ ‖ > characterizes any system that has
a subsystem satisfying φ and the rest of the system is, possibly, unknown.

By negation, ⊥ will be used to express the inconsistency.
We also design operators to express membranes. Thus JφKi is a property that

characterizes a membrane system [Π]i where Π is a membrane system that has
the property φ. Similarly we introduce formulas JwiKi and JRiKi that characterize
the atomic membrane systems [wi]i and [Ri]i respectively.

As we propose a logic for the studying of membrane systems together with
their evolutions, we allow some modal operators indexed by the transitions of
the systems to express the evolutions of a membrane system. Thus 〈ri〉φ is an
operator meant to specify the system Π able to perform a transition ri, i.e.
Π

ri−→ Π ′, and Π ′ satisfies φ. These operators are inspired by dynamic logics
[12] and are basic operators in Hennessy-Milner logic [13].

Formally, the language of dynamic epistemic spatial logic LObs is defined as
follows:

Definition 4 (The language). Let Obs be the set of observers, O an alphabet
and Lab a set of labels. We define the language of dynamic epistemic spatial
logic, by the following grammar:

φ := 0 | > | ¬φ | φ ∧ φ | JwiKi | JRiKi | JφKi | φ ‖ φ | 〈ri〉φ | KAφ

where A ∈ Obs, w ∈ O∗, i ∈ Lab and ri is a rule of the set Ri.

Definition 5 (Derived operators). In addition we introduce some derived
operators, widely used in dynamic-epistemic logics:

1. ⊥ def
= ¬> 2. φ ∨ ψ def

= ¬((¬φ) ∧ (¬ψ)) 3. φ→ ψ
def
= (¬φ) ∨ ψ

4. [ri]φ
def
= ¬(〈ri〉(¬φ)) 5. 1

def
= ¬((¬0) ‖ (¬0)) 6.

∼
KAφ

def
= ¬KA¬φ

The dynamic modality [ri]φ, the dual operator of 〈ri〉φ, captures the weak-
est precondition of a transition ri of a membrane system w.r.t. a given post-
specification φ. We have used the square brackets to denote it, as this notation
is classical in dynamic logics (inspired by the box operator of modal logic). It
shouldn’t be confused with the same brackets use on membrane systems for
denoting membrane composition.

The formula 1 is meant to describe the situation in which the system cannot
be decomposed into two non-trivial subsystems.



5.2 The Semantics of LObs

In this subsection we introduce a semantics for the presented logic. It will be
defined underpinning on a satisfiability relation Π |= φ, that establishes the
condition under which we can affirm that the membrane system Π has (satisfies)
the property φ.

As introduced earlier, each observer sees a membrane system in P. This
membrane system is the “structure” that the observer can recognize in any
more complex system. Hence, for introducing the semantics, we have to devise an
interpretation function int : Obs −→ P that associates to each observer A ∈ Obs
a membrane system int(A) = Π that represents the system that the observer
is able to “recognize”. The intuition is to define the knowledge of the observer
A as the common properties of all systems where A is active, i.e., systems that
contains Π as subsystem.

Definition 6 (Models and satisfaction). Given a class Obs of observers and
an interpretation function int : Obs −→ P we introduce the satisfaction relation
by:

Π |= > always
Π |= ¬φ iff Π 2 φ
Π |= φ ∧ ψ iff Π |= φ and Π |= ψ
Π |= φ ‖ ψ iff Π = Π1|Π2 and Π1 |= φ, Π2 |= ψ
Π |= 0 iff Π = 0
Π |= JwiKi iff Π = [wi]i
Π |= JRiKi iff Π = [Ri]i
Π |= JφKi iff Π = [Π ′]i and Π ′ |= φ

Π |= 〈ri〉φ iff there exists a transition Π
ri−→ Π ′ and Π ′ |= φ

Π |= KAφ with int(A) = Π ′ iff Π = Π ′|Π ′′ and ∀Π ′|Π ′′′ ∈ P we have
Π ′|Π ′′′ |= φ

Then the semantics of the derived operators can be obtained.
Π |= [ri]φ iff for any Π ′ such that Π ri−→ Π ′ (if any), Π ′ |= φ
Π |= 1 iff there are no systems Π ′,Π ′′ with Π = Π ′|Π ′′ and Π ′ 6= 0 6= Π ′′

Π |=
∼
KAφ for int(A) = Π ′ iff either Π 6= Π ′|Π ′′ for any Π ′′, or it exists

Π ′|Π ′′′ such that Π ′|Π ′′′ |= φ

5.3 Expressivity

Open systems: We can exploit the use of > to express properties of open
membrane systems. By an open membrane system we mean a system for which
we know only a subpart and we accept any upper-system of the known part
as possible configuration for the overall situation. For example if our system is
Π = Π1|Π2 and an observer knows only Π1, then for the observer any system
of type Π1|Π3, for any Π3 ∈ P, is a possible system Π. Hence what is outside
Π1 is “open information” for our observer. Reconsidering the example in section



4, for A1, in the initial state, Π was an open system because Π1 has (for A1)
either a normal, or an abnormal vacuole.

If we want to express that a system Π is an open system containing a known
subsystem Π1 then we can express this by allowing an observer A1 ∈ Obs to
see only Π1, i.e. int(A1) = Π1. Then Π |= KA1> means that the system Π is
an upper system of Π1. Indeed, by our semantics, this means that Π = Π1|Π2

and for any Π3 ∈ P we have Π1|Π3 |= >. But the last condition is trivially true,
hence the semantics is equivalent to Π = Π1|Π2, where Π2 can be any system.
Due to this, we can use KA1> to say ”in this system Π1 is a subsystem”.

We can be more specific and express that any upper system of Π1 has the
property φ. We can do this by taking an upper system of Π1, say Π = Π1|Π2,
and stating that Π |= KA1φ, where int(A1) = Π1. This is equivalent with saying
that for any Π3 ∈ P we have Π3|Π1 |= φ.

If we can characterize a membrane system up to identity, we can express that
a system Π is an open system containing a known subsystem characterized by
φ also without using the epistemic operator, by Π |= φ ‖ >. Indeed, w.r.t. our
semantics this means that Π = Π1|Π2 and Π1 |= φ, Π2 |= >. As φ satisfies the
known system and > can be stated about any system Π3 ∈ P we obtain that
any system of type Π1|Π3, for any Π3 ∈ P satisfies φ ‖ >.

Characteristic formulas: Using our logic we can define formulas that will fully
identify a membrane system. Recall Theorem 2 stating that each membrane
system can be decomposed, by using parallel and membrane composition, in
atomic membrane systems. We show further how, by induction in top of atomical
membrane systems, we can define characteristic formulas for any membrane
system.

A characteristic formula of a membrane system Π have to be a formula of
our logic φΠ such that

– Π |= φΠ

– if Π ′ |= φΠ then Π ′ = Π

We define such formulas inductively on structure of Π.

1. φ0
def
= 0 3. φΠ|Π′

def
= φΠ ‖ φΠ′

2. φ[w]i

def
= JwKi 4. φ[Π]i

def
= JφΠKi

2′. φ[R]i

def
= JRKi

Theorem 3. Giving an arbitrary membrane system Π, the formula φΠ is a
characteristic formula for Π.

The fact that we can define characteristic formulas for membrane systems
open the possibility to project any semantical problem in syntax. Thus, if we
want to verify that the system Π has a property ψ, i.e. Π |= ψ, we can project
this problem in syntax where it is equivalent with ` φΠ → ψ, where we denoted
by φΠ the characteristic formula of Π as before. Now the problem Π |= ψ is
equivalent with proving φΠ → ψ with the axioms of our logic.



Similarly, we can express the fact that between Π and Π ′ there exists a
transition Π

ri−→ Π ′ by stating ` φΠ → 〈ri〉φΠ′ . Now ` φΠ → 〈ri〉φΠ′ can be
proved from the axioms iff the transition Π ri−→ Π ′ exists. On this direction we
can also imagine more complex situations. Consider, for example, that we have
the system Π and we want to know if, after doing the transitions labelled by ri
then sj , the ts it will reach a state (a membrane system) that will have a subpart
satisfying ψ. This can be syntactically said by ` φΠ → 〈ri〉〈sj〉〈ts〉(ψ ‖ >).
Indeed ψ ‖ > describes a system having a subsystem that satisfies ψ. Then the
dynamic operators prefixing it, 〈ri〉〈sj〉〈ts〉(ψ ‖ >), means that the system will
reach the state satisfying ψ ‖ > only after it performs the transitions labelled
by ri, sj , ts in this order.

Validity: The presented syntax allows to express the validity of a property in
a class of membrane systems having the same external membrane i, i.e. the
property is satisfied by any of these systems. We can do this by using a “blind
observer”, i.e. an observer A′ ∈ Obs that sees only the trivial system embedded
in i, int(A′) = [0]i.

Indeed, the epistemic operator KA′ has the following semantics.
Π |= KA′φ iff for any Π ′′ ∈ Pi we have Π ′′ |= φ.

This is so because, if a system Π has the property KA′φ then φ is satisfied by
any system Π ′ ∈ P that can be decomposed in Π ′ = [0]i|Π ′′, i.e. Π ′ must have
the skin membrane i, hence Π ′ ∈ Pi. But Π ′ has the property Π ′|[0]i = Π ′, as
[0]i is the null element of the monoid (Pi, |). Hence φ is satisfied by any system
with the skin i, i.e. it is a valid property over Pi. Thus we can encode, in syntax,
the validity of a property.

Consequently, KA′> is a validity, as [0]i is a subsystem of any system in Pi,
Π = Π|[0]i.

Satisfiability: Also the satisfiability of a property can be encoded in the syntax.
We say that a property is satisfiable if it exists at least one membrane system
having this property. For this purpose we use the dual of the knowledge operator

for the blind observer
∼
KA′ (as before we assume that int(A′) = [0]i).

Π |=
∼
KA′φ iff it exists a membrane system Π ′′ ∈ Pi such that Π ′′ |= φ

Indeed, if a system Π satisfies
∼
KA′φ then either Π 6= Π ′|[0]i (this is not the case

as always Π = Π|[0]i) or it exists Π ′′ such that Π ′′|[0]i |= φ. But Π ′′|[0]i = Π ′′,

hence it exists a system Π ′′ ∈ Pi that satisfies φ and vice versa. Thus
∼
KA′φ

provides a way to encode, in syntax, the satisfiability of a property.

5.4 (Some) Axioms, Rules and Theorems

In [15, 17, 16, 14] it has been introduced a Hilbert-style axiomatic system for
dynamic epistemic spatial logic. We present further some interesting axioms and
theorems that can offer an idea about what can be specified and proved using
our logic.



Axiom A 1 ` JφKi ‖ J0Ki ↔ JφKi

The previous axioms states that an empty membrane system contained in
membrane i do not come with extra properties if it is considered as a subsystem
of a system having the skin i. Hence, such a subsystem is ”transparent“.

Axiom A 2 ` φ ‖ ψ → ψ ‖ φ

Axiom A 3 ` (φ ‖ ψ) ‖ ρ→ φ ‖ (ψ ‖ ρ)

These entail that ‖ organizes an abelian monoid structure.

Rule R 1 If ` φ→ ψ then ` φ ‖ ρ→ ψ ‖ ρ.

This rule establish the monotonicity of parallel composition.

Axiom A 4 ` [ri](φ→ ψ) → ([ri]φ→ [ri]ψ).

This axiom is the (K) axiom well-known in modal and dynamic logics which,
together with the next rule of necessity shows that, indeed, our operator is an
authentic modal operator.

Rule R 2 If ` φ then ` [ri]φ.

Axiom A 5 ` (〈ri〉φ) ‖ ψ → 〈ri〉(φ ‖ ψ).

If a subsystem Π1 of a system Π = Π1|Π2 can do a transition ri and further
it satisfies φ while its counterpart Π2 satisfies ψ, then the system Π can be
described as able to perform a transition ri thus passing to a system satisfying
φ ‖ ψ.

Axiom A 6 ` KAφ ∧KA(φ→ ψ) → KAψ

This axiom A6 is the classical (K)-axiom stating that our epistemic operator
is a normal one. It states that if an observer A knows φ and that φ→ ψ then it
knows ψ. It is an usual axiom of knowledge [11].

Axiom A 7 ` KAφ→ φ

Also this axiom is classic in modal and epistemic logics - the axiom (T) -
necessity axiom. It states that the knowledge of any observer must be true, i.e.
an observer cannot know something that is not true.

Axiom A 8 ` KAφ→ KAKAφ.

Also axiom A8 is well known in epistemic logics. It states that our epistemic
agents (observers) have the positive introspection property, i.e. if an observer A
knows something then it (i.e., the observer) knows that it knows that thing.

Axiom A 9 ` KA> → (¬KAφ→ KA¬KAφ)



Axiom A9 states a variant of negative introspection, saying that if an observer
A is active (the system that the observer knows is a subsystem of the whole
system) and if the observer does not know φ, then the observer knows that does
not know φ. Negative introspection is also present in classic epistemic logics.

Rule R 3 If ` φ then ` KA> → KAφ.

Rule R3 states that any active observer knows all the tautologies. Also in
this case we deal with a well known epistemic rule, widely spread in epistemic
logics. But our rule works under the assumption that the observer is active.

In [15, 16, 14] we present a complete axiomatic system and we prove many
theorems in it. Hereafter we will sketch some soundness proofs for the previous
axioms to clarify the intuitions that motivates the choice of them. Similarly all
the axioms can be proved to be sound.

Theorem 4 (Soundness of axiom A5). |= (〈ri〉φ) ‖ ψ → 〈ri〉(φ ‖ ψ)

Proof. If Π |= (〈ri〉φ) ‖ ψ, then Π = Π1|Π2, Π1 |= 〈ri〉φ and Π2 |= ψ. So
∃Π1

ri−→ Π ′
1 and Π ′

1 |= φ. So ∃Π = Π1|Π2
ri−→ Π ′ = Π ′

1|Π2 and Π ′ |= φ ‖ ψ.
Hence Π |= 〈ri〉(φ ‖ ψ).

Theorem 5 (Soundness of axiom A6). |= KAφ ∧KA(φ→ ψ) → KAψ

Proof. Suppose that Π |= KAφ and that Π |= KA(φ→ ψ), where int(A) = Π1.
Then Π = Π1|Π2 and for any Π ′ we have Π1|Π ′ |= φ and Π1|Π ′ |= φ → ψ.
Hence for any such Π1|Π ′ we have Π1|Π ′ |= ψ and because Π = Π1|Π2 we
obtain that Π |= KAψ.

Further we present some meaningful theorems that can be derived with our
system.

Theorem 6. ` KAφ→ KA>.

This theorem says that an observer knows something only if it is active.

Theorem 7 (Monotonicity of knowledge). If ` φ → ψ then ` KAφ →
KAψ

The knowledge is monotone, meaning that if a property φ guarantees a prop-
erty ψ then any observer that knows φ knows also ψ.

Theorem 8 (Consistency of knowledge). ` KAφ→ ¬KA¬φ.
This theorem states that the knowledge of an observer is always consistent;

the observer cannot know φ and ¬φ.

Theorem 9 (Ontological dependency). If int(A) = Π1|Π2, int(A1) = Π1

then ` KA> → KA1>.

If the system associated to observer A1 is a subsystem of the system associ-
ated to observer A, then the activation of observer A implies the activation of
observer A1.

For more interesting theorems, the reader is referred to [15, 16, 14], where,
for this logic, it is also developed a semantics on process algebras proved to be
sound and complete against the same axiomatic system.



6 A (Simple) Case Study

Consider the membrane system defined as:

Π : Π ′ : Π ′′ :
µ = [ [ ]2 [ ]3 [ ]4 ]1 µ′ = [ [ ]2 [ ]3 ]1 µ′′ = [ [ ]4 ]1
w1 = λ w1 = λ w1 = λ
w2 = a w2 = a w4 = c
w3 = b w3 = b
w4 = c
R1 = {r′ : b −→ bin4} R1 = {r′ : b −→ bin4} R1 = {r′ : b −→ bin4}
R2 = {r′′ : a −→ bout} R2 = {r′′ : a −→ bout} R4 = {rIV : b −→ cout}
R3 = {r′′′ : b −→ aout} R3 = {r′′′ : b −→ aout}
R4 = {rIV : b −→ cout}

Obviously Π = Π ′|Π ′′. Suppose now that we have an observer A ∈ Obs
that can see only the membrane system Π ′, i.e., int(A) = Π ′. Hence, for such
observer, the system Π is an open one, as A can see the subsystem Π ′ and, for
the rest, A accepts any other system as a possible one.

Suppose now that, using the knowledge of A, we want to compute the truth
value of the following property: if Π contains a membrane 4 then, eventually,
it is possible to send an object b to the membrane 4 (more exactly after two
transitions). We can express this by stating (and proving) that the next formula
can be derived, as axiom, from the presented axiomatic system.

` KA> → KA(JJ>K4 ‖ >K1 ‖ > → 〈r′′2 〉〈r′1〉(JJbK4 ‖ >K1 ‖ >))

Indeed, the main precondition KA> ensures that the observer A can see
something in the system Π (i.e., Π ′ is a subsystem of Π). This implies that A
knows

JJ>K4 ‖ >K1 ‖ > → 〈r′′2 〉〈r′1〉(JJbK4 ‖ >K1 ‖ >)

We can read the knowledge of A as: if JJ>K4 ‖ >K1 ‖ >, meaning if the
membrane 1 contains a membrane 4 and maybe something else then

〈r′′2 〉〈r′1〉(JJbK4 ‖ >K1 ‖ >).

The fact that we are not interested in what membrane 4 contains it is expressed
by the firsts two >, while the fact that membrane 1 might also contains other
things it is specified by the second >.

Now, this post condition can be read as: the system can use the rule r′′ in
region 2 (which sends an object b to region 1), then it can apply the rule r′

in region 1 (because now, in region 1 there is one b) and after doing these two
transitions, we obtain a membrane system having membrane 4 inside membrane
1 and region 4 contains the object b. The two > are used for specifying the fact
that in region 4, as well as in region 1, might be also other things in which (in
this case) we are not interested in.



Following these steps the specified property can also be proved inside the
syntax of the presented logic.

The important point is that we have succeeded to play with partial infor-
mation without using a complete description of the system Π, but only using
the “point of view” about the system of the observer A. Moreover, the specified
property is true not only for the system Π, but also for any other system which
looks to A “indistinguishable” from Π, i.e., any system of type Π ′|Π ′′′ where
Π ′′′ is an arbitrary membrane system.

Indeed, if Π ′′′ does not contain the membrane 4 then

KA(JJ>K4 ‖ >K1 ‖ > → 〈r′′2 〉〈r′1〉(JJbK4 ‖ >K1 ‖ >))

is still true, as JJ>K4 ‖ >K1 ‖ > is false, and in classic propositional logic false
implies anything. From the other side if Π ′′′ contains a membrane 4, then does
not matter what else it contains, the system Π ′|Π ′′′ it is still able to send a b in
membrane 4 in two transitions, as just shown.

7 Conclusion

The logic we have proposed allows us to specify and formally prove properties of
open membrane systems or, in general, properties that involve partial knowledge.
Such properties cannot be formally described (in an “easy” way) by using the
classic theory of membrane systems. The main idea of the presented logic is
that it allows the analysis of the partial knowledge by collecting the partial
information collected by observers of a membrane system. As showed in the
example presented in Section 4, the logic allows to compute information by using
logical reasoning on the information collected by the observers (even if they do
not communicate each other). Sometime, using the presented logical tools, it is
possible to interpret the “behavior” of the single observers for understanding the
information we are looking for. Since this is done is a “distributed” fashion, this
type of analysis has a computational price much smaller then the one needed for
an analysis of the entire system.
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