
Overview and Directions to the
Reader

The contributions in this publication are divided into a brief introduction to temporal
database research, followed by the five parts already mentioned in the preface. In
addition to the general overview provided here, each of these parts begins with
an overview that in more detail motivates the part and outlines the contents of its
chapters. Each part contains chapters that offer quite extensive surveys of related
research, and the individual chapters are generally self-contained.

The very first chapter offers a brief introduction to temporal database research
and has been written to provide a context for the remaining chapters. It concisely
defines fundamental concepts, illustrates the diverse challenges faced in temporal
database research, samples some of the contributions, and offers a look into the
future of temporal database research. Although most chapters are self-contained,
it is recommended that the reader unfamiliar with temporal databases studies this
chapter first.

Part I is concerned with thesemantics of temporal dataand offers a conceptual
foundation for the remaining parts. It contains seven chapters, each of which is
self-contained. The opening chapter offers a survey of a good deal of the research
presented in the remaining chapters of this part.

Most temporal database research focuses on two fundamental and orthogonal
temporal aspects of data, namely valid time and transaction time. The valid time of
a fact records when the fact is true in the modeled reality, and the transaction time of
a fact records when the fact is stored as current in the database. These aspects, also
termed dimensions, of data are of interest in a wide range of applications. The first
chapter delves into the meaning of valid time and transaction time, thus mapping
out the specialized interrelations that may exist between these aspects of data in
concrete applications and exploring the implications of the interrelations; it also
studies how multiple valid times and transaction times may be associated with the
same data.

The next two chapters offer a comprehensive study of the semantic implica-

vii



viii

tions of storing the current time, captured by the variablenow, in databases. The
first chapter presents a framework for defining the meanings of temporal databases
containing the variablenowand for querying such databases, and the second chapter
is devoted to the issues that relate to the modification ofnow-extended databases.

The chapter, “Unifying Temporal Data Models,” introduces the Bitemporal
Conceptual Data Model and positions this model at the center of a (point-based,
in the terminology of the next chapter) framework of well-behaved transformations
that bridges the gaps between existing temporal data models and their algebraic
query languages. The next chapter most prominently formalizes what it means
for a query language to “respect” the time intervals that are often associated with
data, thus offering an intermediate between the interpretation of time intervals as
abbreviations of sets of points and as non-decomposable values. When capturing
the transaction time of data, deletion statements only have a logical effect. The last
chapter introduces and studies physical deletion, termed vacuuming.

Part II presents the core data model and query language of the temporal
TSQL2 query language, which extends the formally standardized SQL-92 query
language. This part represents a single, integratedcase study in temporal query
language design. Its fourteen chapters stem from a unique and intense one-year ini-
tiative aimed at defining a consensus temporal query language—based maximally
on past contributions by the community—which could serve as a foundation for
future research and as a recommendation to vendors interested in offering database
products with built-in temporal support.

The reader will notice that this part is based quite solidly on the conceptual
foundation of the previous part and that TSQL2’s data model is based on the Bitem-
poral Conceptual Data Model. It is recommended that the reader initially studies the
short tutorial in the part’s first chapter. In addition, it is beneficial to be familiar with
the material offered in the chapters, “The TSQL2 Data Model” and “Valid-Time Se-
lection and Projection,” before proceeding to subsequent chapters. The penultimate
two chapters are not part of the language design per se, but argue for the feasibility
of the language design by offering a foundation for its implementation. The last
chapter supplies the language specification in the format of the SQL-92 standard.

Part III, which also concernstemporal data models and query languages, de-
scribes results of research that continued where TSQL2 ended. With only one year
available and with eighteen researchers involved, the initiative that brought about
TSQL2 was hectic, and not all aspects of the language design received adequate
attention. The first chapter in this part identifies some of the trouble spots and es-
tablishes a foundation for new requirements, which point to an alternative design.
The next chapter introduces a temporal notion of upward compatibility that a tem-
poral extension of a query language and data model should satisfy, it proceeds to
study the implications of this requirement, and it evaluates all existing temporal
SQL extensions with respect to upward compatibility and temporal upward com-



ix

patibility.
The first two chapters set the stage for a better successor to TSQL2. The next

trio of chapters propose one such successor—they configure the part, SQL/Tem-
poral, of the now almost completed successor to the SQL-92 standard. The reader
interested in the background of the design requirements to the proposal should study
the first two chapters of Part III before proceeding. The trinity’s first chapter pro-
vides an overview of the proposal and is a natural read for those interested in under-
standing this successor to TSQL2. The next two chapters comprise the actual expert
contributions submitted to the standards bodies. The first configures SQL/Temporal
with support for valid time, and the next adds support for transaction time. Together,
they flesh out the picture initially drawn by the first chapter, and they also encom-
pass specifications of the temporal support in the formalized language chosen by
the standards bodies.

The final chapter puts forth another successor to TSQL2, termed ATSQL. No
standardization process has affected this language, making it perhaps cleaner and
more “theoretical.” In comparison to the SQL/Temporal proposal, ATSQL offers
better built-in support for formulating temporal query language statements, as well
as support for queries that are simultaneously interval and point-based, and it has
a formal, denotational-semantics style definition. On the other hand, it assumes a
set-based framework, thus avoiding the issues associated with duplicates, and it is
less rich in features.

The source code of an implementation of the core of the SQL/Temporal pro-
posal as well as an implementation of a core subset of ATSQL are publicly acces-
sible on the Web. Barring the provisos stated above, all chapters of this part are
self-contained and may be read in isolation.

Part IV follows up on the coverage of data semantics and data models and
query languages by considering thedesign of temporal databases. The first two
of its five chapters concern logical design in a relational database context and are
independent from the last three chapters, which concern conceptual design in an
Entity-Relationship context.

The first chapter observes that a rich theory exists for database design in the
conventional relational model, which is, however, not readily applicable to tempo-
ral relational data models because these latter models entertain new kinds of rela-
tion structures. Following an investigation of all existing temporal normalization
concepts, the chapter adopts a point-based approach and generalizes existing nor-
malization theory—dependencies, keys and normal forms—to apply to all temporal
relational data models that possess time-slice operations, which almost all tempo-
ral models do. The second chapter takes a next logical step: it provides concepts
for capturing additional, temporal semantics of data and then proposes additional
guidelines for decomposing temporal relations, and also standard relations, based
on their temporal semantics, and in this way, completes the picture.



x

The remaining three chapters of the part aim to temporally enhance the design
of databases at the conceptual level and are based on the ER model. It is common
practice to design a conceptual database schema using a graphical tool that sup-
ports some variation of the ER model and then to generate a relational database
schema from the ER diagram. The first chapter makes available a comprehensive
survey and evaluation of the existing temporal ER models. Observing that no single
model is entirely satisfactory, the second chapter presents the design and semantics
of a new temporal ER model, TimeER, based on an ontological foundation and
explicit requirements. This second chapter should be read before proceeding to
the last chapter, which gives detailed mappings from TimeER to a surrogate-based
relational model and the regular relational model.

Part V investigates theimplementation of temporal data models and query
languages. The first chapter proposes a new technique for the efficient computation
of the operation that correlates related data stored in different valid-time relations.
This operation is fundamental when querying temporal data, and existing systems
apply a brute-force technique to computing this operation, which is often ineffi-
cient. The next chapter offers techniques for the efficient computation of another
fundamental operation, namely the operation that retrieves the state, current at a
particular time, from a relation that supports transaction time.

The two chapters that follow give complementing techniques for indexing
bitemporal data, which has both a valid-time and a transaction-time dimension. Be-
cause of the special variablenow, bitemporal data is unlike any other data, and all
existing indexing techniques fall short in supporting this data. The first technique
generalizes the R-tree, an index proposed for spatial data, to contend with regions
that grow continuously as time advances. The second technique elects to subject the
bitemporal data to a number of transformations that render all regions static. This
in turn makes it possible to index the transformed data using a total of four con-
ventional R-trees. Queries that are transformed to counter the data transformations
achieve perfect precision and recall.

The last three chapters all follow from the same motivation and consider dif-
ferent aspects of the same general challenge. Using a conventional database man-
agement system (DBMS) architecture for developing a temporal DBMS is a daunt-
ing task that may only be realistic for major database vendors with access to an
existing commercial code basis. A layered architecture may be an effective alterna-
tive: temporal support is achieved by a layer that is effectively an advanced appli-
cation built on top of an existing DBMS. In this architecture, temporal SQL state-
ments are translated into SQL statements understood by the underlying DBMS, the
services of which are reused. The first chapter introduces concepts and techniques
central to a layered implementation approach. The next chapter offers a taxonomy
of different layered architectures, evaluates their strengths and weaknesses, and also
gives examples of their use. The last chapter is devoted specifically to the interac-



xi

tion between the timestamp values placed on data and the support for well-behaved
user transactions. Without a careful choice of timestamp values, transactions result
in anomalous database states. The chapter delivers techniques that yield simple,
consistent, and efficient support for modifying bitemporal databases in the context
of user transactions.

In summary, the five parts of the publication cover four topics: the semantics
of temporal data, the design of data models and languages for temporal data, the
design of databases expressed in terms of temporal data models as well as tem-
porally enhanced design of conventional databases, and the effective and efficient
implementation of temporal data models and languages.


