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Temporally Enhanced Database Design

Christian S. Jensen and Richard T. Snodgrass

The design of appropriate database schemas is critical to the effective use of
database technology and the construction of effective information systems that
exploit this technology. The temporal aspects of database schemas are often
particularly complex and thus difficult and error-prone to design. This chapter
focuses on the temporal aspects of database schemas. Its contributions are two-
fold. First, a comprehensive set of concepts are presented that capture temporal
aspects of schemas. Second, the use of these concepts for database design is
explored. Specifically, the chapter provides new guidelines for the design of
(temporal) relational databases.

The chapter first generalizes conventional functional dependencies to ap-
ply to temporal databases, leading to temporal keys and normal forms. Time
patterns identify when attributes change values and when the changes are re-
corded in the database. Lifespans describe when attributes have values. The
temporal support and precision of attributes indicate the temporal aspects that
are relevant for the attributes and with what temporal granularity the aspects
are to be recorded. And derivation functions describe how the values of an at-
tribute for all times within its lifespan are computed from stored values. The
implications of these concepts for database design are explored.
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1 Introduction

The design of appropriate database schemas is crucial to the effective use of data-
base technology and the construction of information systems that exploit this tech-
nology. The process of appropriately capturing the temporal aspects of the modeled
reality in the database schema—be it based on, e.g., the relational model or the
ER model—is complex and error prone, and the resulting schemas are often overly
difficult to understand.

With a focus on the temporal aspects of database schemas, this chapter ex-
plores the technical foundation for simplifying the conceptual design process. Spe-
cifically, we propose to separate the design of conceptual database schemas for
time-oriented applications into two stages. In the first stage, the underlying tem-
poral aspects are ignored, resulting in the design of simple, single-state (so-called
non-temporal) schemas. In the second stage, these initial schemas are annotated
with their temporal aspects. These annotations may imply further decomposition of
the annotated schemas, leading to the final conceptual schema. This schema may
then be mapped to an implementation platform, e.g., an SQL–92 database system.

This chapter focuses on the second stage, and begins with a non-temporal
database schema. The chapter’s contributions are two-fold. First, a comprehen-
sive set of temporal properties that may be used for annotation are defined and
illustrated. Second, the use of these properties is explored. Specifically, new guide-
lines for how the annotations should result in decomposition of the schemas are
defined, and their use is explored. The subsequent mapping of annotated, decom-
posed schemas to implementation platforms is beyond the scope of this chapter.

The chapter is structured as follows. Section 2 introduces conceptual tempo-
ral relations that may capture the valid time and the transaction time of the stored
tuples. These are needed because the non-temporal relation schemas upon annota-
tion may reveal themselves to be temporal. Then, the assumed design process is
outlined in order to describe the context of this chapter’s topic. At the end, the car
rental case that will be used for illustration throughout is introduced.

Section 3 reviews how to extend conventional normalization concepts to ap-
ply to temporal relations, leading to temporal keys and normal forms. It then ar-
gues that the properties of attributes are relative to the objects they describe and
thus introduces surrogates for representing real-world objects in the model. The
following subsections address in turn different aspects of time-varying attributes,
namely lifespans, time patterns, derivation functions, temporal support, and tempo-
ral precision. Lifespans describe when attributes have values; time patterns identify
when attributes change values and when the changes are recorded in the database;
derivation functions describe how the values of an attribute for all times within its
lifespan are computed from stored values; and the temporal support and precision
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of attributes indicate the temporal aspects that are relevant for the attributes and
with which temporal granularity the aspects are to be recorded.

Section 4, on decomposition guidelines, is devoted to the implications of the
temporal properties for conceptual database design. Section 5 surveys other ap-
proaches to temporally enhanced database design. The final section summarizes
and points to opportunities for further research.

2 Temporal Database Design—Overview and Context

This section sets the context for discussing temporally enhanced database design.
Specifically, we first adopt a particular model of time itself, then add time to conven-
tional relations to yield the conceptual temporal relations employed in the chapter.
We also define essential algebraic operators on the temporal relations. A description
of the database design process follows, and the section ends with an introduction of
the car rental case.

2.1 Modeling and Representing Time

Most physicists perceive thereal time line as being bounded, the lower bound be-
ing the Big Bang (which is believed to have occurred approximately 14 billion years
ago) and the and upper bound being the Big Crunch. There is no general agreement
as to whether the real time line is continuous or discrete, but there is general agree-
ment in the temporal database community that a discretemodelof time is adequate.

Consequently, our model of the real time line is that of a finite sequence of
chronons[19]. In mathematical terms, this is isomorphic to a finite sequence of
natural numbers [20]. The sequence of chronons may be thought of as represent-
ing a partitioning of the real time line into equal-sized, indivisible segments. Thus,
chronons are thought of as representing time segments such as femtoseconds or sec-
onds, depending on the particular data processing needs. Real-world time instants
are assumed to be much smaller than chronons and are represented in the model by
the chronons during which they occur. We will usec, possibly indexed, to denote a
chronon.

A time interval is defined as the time between two instants, a starting and a
terminating instant. A time interval is then represented by a sequence of consecu-
tive chronons where each chronon represent all instances that occurred during the
chronon. We may also represent a sequence of chronons simply by the pair of the
starting and terminating chronon. The restriction that the starting instant must be
before the ending instant is necessary for the definition to be meaningful in situa-
tions where an interval is represented by, e.g., a pair of identical chronons. Unions
of intervals are termedtemporal elements[14].
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2.2 Temporal Relations

Two kinds of time are of general relevance to data recorded in a database. Thus,
to capture the time-varying nature of data, time values from two orthogonal time
domains, namely valid time and transaction time, are associated with the tuples in a
bitemporal conceptual relation instance. Valid time is used for capturing the time-
varying nature of the portion of reality being modeled, and transaction time models
the update activity associated with the relation.

For both time domains, we employ the model of time outlined in the previous
section. The domain of valid times is given asDV T = {cv1, cv2, . . . , cvk}, and the
domain of transaction times may be given asDT T = {ct1, ct2, . . . , ctj} A valid-time
chrononcv is thus a member ofDVT , a transaction-time chrononct is a member
of DT T , and a bitemporal chrononcb = (ct , cv) is an ordered pair of a transaction-
time chronon and a valid-time chronon.

Next, we define a set of names,DA = {A1, A2, . . . , AnA}, for explicit at-
tributes and a set of domains for these attributes,DD = {D1, D2, . . . , DnD}. For
these domains, we use⊥i , ⊥u, and⊥ as inapplicable, unknown, and inapplicable-
or-unknown null values, respectively (see, e.g., [1]). We also assume that a domain
of surrogates is included among these domains. Surrogates are system-generated
unique identifiers, the values of which cannot be seen, but only compared for iden-
tity [17]. Surrogate values are used for representing real-world objects. With the
preceding definitions, the schema of a bitemporal conceptual relation,R, consists
of an arbitrary number, e.g.,n, of explicit attributes fromDA with domains inDD,
and an implicit timestamp attribute, T, with domain 2(DT T ∪{UC})×DVT . Here,UC
(“until changed”) is a special transaction-time marker. A value(UC, cv) in a time-
stamp for a tuple indicates that the tuple being valid at timecv is current in the
database. The example below elaborates on this.

A set of bitemporal functional (and multivalued) dependencies on the explicit
attributes are part of the schema. For now, we ignore these dependencies—they are
treated in detail later.

A tuplex = (a1, a2, . . . , an| tb), in a bitemporal conceptual relation instance,
r(R), consists of a number of attribute values associated with a bitemporal time-
stamp value. For convenience, we will employ the term “fact” to denote the infor-
mation recorded or encoded by a tuple.

An arbitrary subset of the domain of valid times is associated with each tuple,
meaning that the fact recorded by the tuple istrue in the modeled realityduring
each valid-time chronon in the subset. Each individual valid-time chronon of a
single tuple has associated a subset of the domain of transaction times, meaning
that the fact, valid during the particular chronon, iscurrent in the relationduring
each of the transaction-time chronons in the subset. Any subset of transaction times
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less than the current time and including the valueUC may be associated with a
valid time. Notice that while the definition of a bitemporal chronon is symmetric,
this explanation is asymmetric. This asymmetry reflects the different semantics of
transaction and valid time.

We have thus seen that a tuple has associated a set of so-calledbitemporal
chrononsin the two-dimensional space spanned by transaction time and valid time.
Such a set is termed abitemporal element[19] and is denotedtb. Because no two
tuples with mutually identical explicit attribute values (termedvalue-equivalent) are
allowed in a bitemporal relation instance, the full history of a fact is contained in a
single tuple.

Example 1 Consider a bitemporal relation recording information about the cus-
tomers in a rental car company. The schema has these explicit attributes:

Customer = (CuID, Name, Address, Rating)

Each customer has a unique customer id,CuID , a name, and an address. Also, a
rating is maintained that records the value of the customer to the company. This
rating is used for preferential customer treatment.

In this example, we assume that the granularity of chronons is one day for
both valid time and transaction time, and the period of interest is some given month
in a given year, e.g., January 1995. Throughout, we use integers as timestamp
components. The reader may informally think of these integers as dates, e.g., the
integer 15 in a timestamp represents the date January 15, 1995. The current time is
assumed to be 25 (i.e.,now= 25).

Figure 1 shows an instance,customer , of this relation schema. The special
valueUC in the relation signify that the given tuple is still current in the database
and that new chronons will be added to the timestamps as time passes and until the
tuple is logically deleted.

The relation shows the employment information for Leslie, a preferred cus-
tomer. On time 5, it is recorded that Leslie’s address will be Birch Street, from
time 5 to time 20, and Elm Street, from time 21 to time 30. Subsequently, it was
discovered that Leslie’s address was not Birch Street, but rather Beech Street, from
time 5 to time 20. As a result, on time 10, the information about Birch Street was
(logically) deleted, and the correct information was inserted. 2

Depending on the extent of decomposition, a tuple in a bitemporal relation
may be thought of as encoding an atomic or a composite fact. We simply use the
terminology that a tuple encodes a fact and that a bitemporal relation instance is a
collection of (bitemporal) facts.

Valid-time relations and transaction-time relations are special cases of bitem-
poral relations that support only valid time or transaction time, respectively. Sets
of valid-time and transaction-time chronons are termedvalid-timeandtransaction-
time elementsand are denoted bytv andt t , respectively.
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CuID Name Address Rating T

007 Leslie Birch Street Preferred {(5, 5), . . . , (5, 20), . . . ,
(9, 5), . . . , (9, 20)}

007 Leslie Elm Street Preferred {(5, 21), . . . , (5, 30), . . . ,
(25, 21), . . . , (25, 30),
(UC, 21), . . . , (UC, 30)}

007 Leslie Beech Street Preferred {(10, 5), . . . , (10, 20), . . . ,
(25, 5), . . . , (25, 20),
(UC, 5), . . . , (UC, 20)}

Figure 1: A Bitemporal Conceptual Relation

2.3 Associated Algebraic Operators

We have so far described the objects in the bitemporal conceptual data model—
relations of tuples timestamped with bitemporal elements. We now define some
algebraic operators on these objects that will be used later. A complete algebra is
defined elsewhere [38].

Define a relation schemaR = (A1, . . . , An|T), and letr be an instance of
this schema. We will useA as a shorthand for all attributesAi of R. LetD be an
arbitrary set of explicit (i.e., non-timestamp) attributes of relation schemaR. The
projection onD of r, πB

D(r), is defined as follows.

πB
D(r) = {z(|D|+1) | ∃x ∈ r (z[D] = x[D])∧

∀y ∈ r (y[D] = z[D] ⇒ y[T] ⊆ z[T])∧
∀t ∈ z[T] ∃y ∈ r (y[D] = z[D] ∧ t ∈ y[T])}

The first line ensures that no chronon in any value-equivalent tuple ofr is left unac-
counted for, and the second line ensures that no spurious chronons are introduced.

Let P be a predicate defined onA. The selectionP on r, σB
P (r), is defined as

follows.

σB
P (r) = {z | z ∈ r ∧ P(z[A])}

As can be seen from the definition,σB
P (r) simply performs the familiar snapshot

selection, with the addition that each selected tuple carries along its timestamp T.
Finally, we define two operators that select on valid time and transaction

time. Unlike the previous operators, they have no counterparts in the snapshot
relational algebra. Letcv denote an arbitrary valid-time chronon and letct denote
a transaction-time chronon. Thevalid-timesliceoperator (τ B) yields a transaction-
time relation; thetransaction-timesliceoperator (ρB) evaluates to a valid-time rela-
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tion1.

τ B
cv (r) = {z(n+1) | ∃x ∈ r (z[A] = x[A] ∧ z[T] = {ct |(ct , cv) ∈ x[T]} ∧ z[T] 6= ∅)}
ρB

ct
(r) = {z(n+1) | ∃x ∈ r (z[A] = x[A] ∧ z[T] = {cv|(ct , cb) ∈ x[T]} ∧ z[T] 6= ∅)}

Thus, τ B

cv (r) simply returns all tuples inr that were valid during the valid-time
chrononcv. The timestamp of a returned tuple is all transaction-time chronons
associated withcv. Next,ρB

ct
(r) performs the same operation except the selection

is performed on the transaction timect .

Example 2 Consider thecustomer relation shown in Figure 1. The following
result is produced byτ B

25(customer ).

CuID Name Address Rating T

007 Leslie Elm Street Preferred {5, . . . , 25}
This says that at transaction time 5 we stored this information, and this information
is still current (at time 25). The valid-timeslice operator selects all tuples with
a timestamp that contains a chronon that has the argument chronon as its second
component. The timestamp of result tuples contain those transaction-time chronons
that were associated with the argument valid-time chronon. 2

The similar operators for valid-time and transaction-time relations are simpler
special cases and are omitted for brevity. We will use superscripts “T” and “V” for
the transaction and valid-time counterparts, respectively.

To extract fromr the tuples valid at timecv and current in the database during
ct (termed asnapshotof r), eitherτ V

cv (ρ
B

ct
(r)) orρT

ct
(τ B

cv (r))may be used; these two
expressions evaluate to the same snapshot relation.

2.4 Overview of the Design Process

The topics considered in this chapter are displayed in their data modeling context
in Figure 2 and are discussed in the following.

We assume that an atemporal database schema is initially produced. This
database schema consists of atemporal versions of the conceptual-relation schemas
described earlier in this section. The database schema is atemporal in the sense that
all temporal aspects related to valid and transaction time of the relation schemas are
simply ignored—or left unspecified. These atemporal relation schemas may also
be thought of as primitive object types: Each instance of an object type, i.e., each
object (or tuple), has an ID (a surrogate) that is independent of its state, and the
state is described solely using single-valued attribute values with domains defined
by built-in types.

A wide range of design approaches may be employed to produce the initial
atemporal database schema—no assumptions are made.

1Operatorρ was originally termed therollback operator, hence the choice of symbol.
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Figure 2: Data Modeling Context

In the next step, the relation schemas, or primitive object-type schemas, are
annotated with temporal properties, to be defined in the next section. Following the
annotation, the schema description is complete. The subsequent step is then to apply
decomposition guidelines, to be defined in Section 4, to the schemas, leading to a
decomposed conceptual database schema, with genuine temporal relation schemas
as defined earlier. This database schema may subsequently be mapped to various
implementation platforms, e.g., SQL–92 [30], SQL3, or TSQL2 [37].

It is an underlying rationale that the database is to be managed by a rela-
tional, or temporal-relational, DBMS that employs tuple timestamping. Indeed,
increasingly many databases are being managed by relational DBMSs; and these
systems, in addition to most temporal relational prototype DBMSs, employ tuple
timestamping.

Hence, the decomposition that maps the atemporal database schema to a de-
composed, tuple-timestamped temporal database schema is an important compo-
nent of a design framework. Specifically, this decomposed temporal database sche-
ma provides an attractive starting point for mapping the database schema to the
database schema of a specific DBMS (such as CA Ingres, DB2, Informix, Mi-
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crosoft, Oracle, or Sybase). It is attractive because the “conceptual distance” to
the various DBMS schemas is small.

Throughout, we will use the car rental case for exemplification.

2.5 Example—Car Rentals

Figure 3 describes the car rental database schema that will be annotated with tempo-
ral properties and decomposed in the next two sections. The aspects of the schema

Branch = (BrID, Name, Location, Manager, AssistantMgr,
Capacity)

Car = (CarID, Branch, Model, Make, Category, Year,
Mileage, LastServiced)

Customer = (CuID, Name, Address, Rating)
RentalBooking = (RBID, Branch, Category, Customer,

Price, CreditCardNo, CardType)

Figure 3: Car Rental Schema

that are not self-explanatory are described briefly next. Branches haveManager
andLocation attributes. TheCapacity attribute indicates the maximum num-
ber of cars a branch is able to manage. A car belongs to a specific branch, so
attributeBranch is a foreign key referencing tableBranch . TheCustomer re-
lation was introduced in Example 1. When a car rental is booked, the booking is for
a specific branch and car category (e.g., Economy, Compact, Mid-size). It is made
by a customer who is quoted a certain price, and the customer made the reservation
using a credit card.

3 Temporal Properties of Data

The schema just presented is atemporal; there is no mention of time-varying values.
The following sections will discuss how this schema is elaborated and decomposed
when time is considered. But first we examine conventional functional dependen-
cies, which will be subsequently applied to time-varying relations.

3.1 Functional Dependencies

Functional dependencies play a central role in conventional database design and
should also do so in our framework. In our framework, we initially design a non-
temporal database schema and ignore the issues of valid and transaction time. Thus,
different attributes in the same initial schema may have different requirements with
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respect to temporal support; for example, some attributes may require valid-time
support while other attributes do not.

As background for considering temporal functional dependencies, we next
state the notion of a functional dependency for conventional (snapshot) relations.

Definition 1 Let a relation schemaR be defined asR = (A1, A2, . . . , An), and let
X andY be sets of attributes ofR. The setY is functionally dependenton the set
X, denotedX→ Y , if for all meaningful instancesr of R,

∀s1, s2 ∈ r(s1[X] = s2[X] ⇒ s1[Y ] = s2[Y ]).
If X→ Y , we say thatX determinesY . 2

A functional dependency constrains the set of possible extensions of a rela-
tion. Which functional dependencies are applicable to a schema reflects the reality
being modeled and the intended use of the database. Determining the relevant func-
tional dependencies is a primary task of the database designer.

3.2 Temporal Functional Dependencies

Generalizations of conventional dependencies make it meaningful to apply depen-
dencies to the initial schemas, similarly to how dependencies are applied in conven-
tional normalization. The designer’s use of the dependencies is not affected by the
attributes’ particular levels of temporal support.

Generalizing Functional Dependencies to Temporal Relations

In database design, functional dependencies areintensional, i.e., they apply to every
possible extension. This intuitive notion already encompasses time, for a functional
dependency may be interpreted as applying at any time in reality and for any stored
state of the relation.

To be specific, consider the restricted case of a transaction-time relationr,
with schemaR = (A1, . . . , An|T), and a parallel snapshot relationr ′ with the same
schema (but without the implicit timestamp attribute), i.e.,R′ = (A1, . . . , An).
The current state ofr, denoted byρT

now(r), where “now” denotes the current time,
will faithfully track the current state ofr ′. Past states ofr ′ will be retained inr,
and can be extracted viaρT

t (r), with “ t” being the desired past point in time. A
functional dependency onR′ will hold for all possible extensions, and hence for all
past states ofr ′. Hence, the same functional dependency must hold for all snapshots
of r (this insight first appeared over a decade ago [4]). A similar argument can be
applied to valid-time relations and to bitemporal relations, yielding the following
characterization [22].
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Definition 2 LetX andY be sets of non-timestamp attributes of a bitemporal rela-
tion schemaR. A temporal functional dependency, denotedX

T→Y , exists onR if
for all meaningful instancer of R,

∀cv, ct ∀s1, s2 ∈ τ V
cv (ρ

B

ct
(r)) (s1[X] = s2[X] ⇒ s1[Y ] = s2[Y ]). 2

In the definition of a temporal functional dependency, a temporal relation is per-
ceived as a collection of snapshot relations. Each such snapshot of any extension
must satisfy the corresponding functional dependency.

The parallel between conventional functional dependencies and temporal func-
tional dependencies means that inference rules such as Armstrong’s axioms have
close temporal counterparts that play the same role in the temporal context as do the
non-temporal rules in the non-temporal context. Next, we can also define temporal
keys [22]. For example, the explicit attributesX of a temporal relation schemaR
form a(temporal) keyif X

T→R. Finally, we can generalize snapshot normal forms
in a similar manner.

Example 3 These are some of the dependencies that hold in the rental car database
schema (this schema was shown in Figure 3):

In Branch : Name
T→ Location Manager AssistantMgr

Capacity

In Car : CarID
T→ Branch Model Make Category Year

Mileage LastServiced

In Customer : CuID
T→ Rating

CuID Address
T→ Name

In tableCustomer , attributeCuID determinesRating , but because the same
customer may have several names and addresses at a time,CuID does not deter-
mine NameandAddress . AttributesCuID andAddress together determine
Namebecause customers have only oneNameassociated with each of their possi-
ble several addresses. Note that in tableBranch , Name(and alsoBrID ) is a key,
as isCarID in schemaCar . 2

Definition 3 A pair (R, F) of a temporal relation schemaR and a set of associ-
ated temporal functional dependenciesF is in temporal Boyce-Codd normal form
(TBCNF) if

∀ X T→Y ∈ F+ (Y ⊆ X ∨X T→R). 2

Definition 4 A pair (R, F) of a temporal relation schemaR and a set of associated
temporal functional dependenciesF is in temporal third normal form(T3NF) if
for all non-trivial temporal functional dependenciesX

T→Y in F+, X is a temporal
super-key forR or each attribute ofY is part of a minimal temporal key ofR. 2

In a similar fashion, it is possible to devise temporal variants of other well-
known dependencies (e.g., multi-valued and join) and normal forms (e.g., fourth
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and fifth normal forms). Similarly, the notions of lossless-join and dependency-
preserving decomposition can be naturally extended to temporal relations. Further-
more, one can define temporal variants of conventional integrity constraints involv-
ing uniqueness, referential integrity, and subset and cardinality constraints.

To illustrate, we define foreign key constraints. Let bitemporal schemasR

andS have explicit attributesA1, A2, . . . , An andB1, B2, . . . , Bm, respectively.
AttributesX of S is a foreign key referencing attributesY of R if X andY have the
same number of attributes, if the attributes ofX andY are pair-wise compatible,
and if for all meaningful instancesr of R ands of S,

∀cv, ct (πB
X(τ

B
cv (ρ

B

ct
(s))) ⊆ πB

Y (τ
B
cv (ρ

B

ct
(r)))).

If bothR andS do not support valid or transaction time, the corresponding timeslice
operations are simply omitted in the subset condition above. If only one ofR and
S supports valid time then the valid-timeslice operation with time argumentNOW
is applied to that relation. The same applies to transaction time. For example,
if R supports only transaction time andS supports only valid time, the condition
becomesπB

X(τ
B

NOW(s)) ⊆ πB
Y (ρ

B

NOW(r)).

Example 4 In the rental car database schema, all relation schemas are in TBCNF,
with the exception of schemaCustomer where non-trivial dependencyCuID

T→
Rating violated the requirement that the left-hand side must be a superkey. To
bring the database schema to TBCNF,Customer is thus decomposed into two
schemas.

CustomerAddr = (CuID, Name, Address)
CustomerRating = (CuID, Rating)

Here,CuID of CustomerRating would be declared as a foreign key referencing
CuID of CustomerAddr . 2

Strong Temporal Functional Dependencies

The temporal dependencies we have seen thus far apply snapshot dependencies
to individual snapshots in isolation. Thus, these dependencies are not capable of
capturing the relative variation over time of attribute values. So while we were able
to capture dependencies such as a salary attribute (at any time) being determined
by an employee-name attribute, we cannot capture that a salary of an employee
does not change within a month, or never changes. These latter constraints require
looking at more than one time point to determine if the constraint is satisfied by
a particular relation instance. This distinction has previously been captured more
generally with the termsintrastateandinterstateintegrity constraints [3].

While a temporal dependency holds if the corresponding conventional depen-
dency holds for each snapshot in isolation, we now “bundle” tuples of certain snap-
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shots and require the corresponding snapshot dependency to hold for each “bundle”
in isolation. A “bundle” is defined to contain all tuples in all valid timeslices of the
result obtained from applying a single transaction timeslice operation to a meaning-
ful bitemporal database instance of the schema under consideration. This is stated
more precisely below.

Definition 5 Let X andY be sets of non-timestamp attributes of a bitemporal re-
lation schemaR. A strong temporal functional dependency, denotedX

Str→Y , exists
onR if for all meaningful instancesr of R,

∀ct , cvx, cvy ∀s1 ∈ τ V
cvx
(ρB

ct
(r)) ∀s2 ∈ τ V

cvy
(ρB

ct
(r)) (

s1[X] = s2[X] ⇒ s1[Y ] = s2[Y ]). 2
Strong temporal dependencies are useful in part because they have a practical

and intuitive interpretation. Specifically, ifX
Str→Y holds on a relation schema, this

means thatY does not vary with respect toX.

Example 5 In the rental car schema, there are several strong dependencies, e.g.,
the following.

In Car : CarID
Str→Model Make Category Year

In RentalBooking : RBID
Str→ Branch Category Customer Price

CreditCardNo CardType 2

Strong temporal normal forms and integrity constraints can be analogously defined.
In the strong temporal dependencyX

Str→Y , attributesX may vary more often
than attributesY , butX must change whenY changes.

Definition 6 Let X andY be sets of non-timestamp attributes of a bitemporal re-
lation schemaR. A strong temporal equivalence, denotedX

Str↔Y , exists onR if
X

Str→Y andY
Str→X. 2

Intuitively, X
Str↔Y means that the sets of attributesX andY change values simulta-

neously, and are thus synchronous. We return to this issue in Section 4.4.
It is possible to take these notions of dependencies even further, as has sub-

sequently been done by Wang and his colleagues [44] and by Wijsen [45]. Wang
et al. generalized strong dependencies to dependencies that were along a spectrum
between our temporal functional dependencies, which apply to individual times-
lices, and strong functional dependencies, which apply to all timeslices at once.
Specifically, they define a functional dependency for each availablegranularity
(e.g., second, week, year), and require that the equality holds only during a unit
of the granularity. Next, Wijsen has recently developed a normalization theory for
valid-time databases that includes three types of temporal dependencies. Two cor-
respond to our temporal dependency and strong temporal dependency. The third
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dependency is in-between the two. This so-calleddynamic dependencyholds if the
corresponding snapshot dependency holds on the unions of all pairs of consecutive
snapshots.

3.3 Using Surrogates

An attribute is seen in the context of a particular real-world entity. Thus, when we
talk about a property, e.g., the frequency of change, of an attribute, that property
is only meaningful when the attribute is associated with a particular entity. As an
example, the frequency of change of a salary attribute with respect to a specific
employee in a company may reasonably be expected to be relatively regular, and
there will only be at most one salary for the employee at each point in time. In
contrast, if the salary is with respect to a department, a significantly different pattern
of change may be expected. There will generally be many salaries associated with
a department at a single point in time. Hence, it is essential to identify the reference
object when discussing the semantics of an attribute.

We employ surrogates for representing real-world entities in the database.
In this regard, we follow the approach adopted in, e.g., the TEER model by El-
masri [11]. Surrogates do not vary over time in the sense that two entities identified
by identical surrogates are the same entity, and two entities identified by different
surrogates are different entities. We assume the presence of surrogate attributes
during the design process. Just prior to performing the implementation-platform
mapping, surrogate attributes may be either (a) retained, (b) replaced by regular
(key) attributes, or (c) eliminated.

Example 6 In our database schema, we add a surrogate to each of the (now) six
tables. For example, we add a surrogate for branches,BrSur , to tableBranch
and a surrogate for cars,CarSur , to tableCar . 2

Definition 7 Let X be a set of non-timestamp attributes of a bitemporal relation
schemaR with surrogate attributeS. ThenX is said to betime invariantif S

Str→X. 2

Because it is assumed that different entities are represented by different surrogates
and the same entity always is represented by the same surrogate, this is a rather nat-
ural definition oftime invariantattributes. By combining standard temporal depen-
dency and strong temporal dependency, the notion of a time-invariant key (which
had previously been used with a different meaning [31]) results.

Definition 8 Let X be a set of non-timestamp attributes of a bitemporal relation
schemaR with surrogate attributeS. ThenX is termed atime-invariant key (TIK)
if S

Str→X andX
T→R. 2

The first requirement to attributesX is that they be time invariant. The second is
that they be a temporal key. In combination, the requirements amount to saying that
X is a key with values that do not change (with respect to the surrogate attribute).
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Example 7 For schemaBranch , we have seen thatNameandBrID are keys.
BecauseBrSur strongly determines onlyBrID , and notName, BrID is a time-
invariant key. The intuition is that a branch may change name, but not itsBrID

value. In schemaRentalBooking , we have thatRBSur
Str→ RBID, so as we

have seen thatRBID is a key,RBID is also a time-invariant key. Surrogates such as
BrSur andRBSur in relations with a time-invariant key are eliminated from the
schema. 2

3.4 Lifespans of Individual Time-Varying Attributes

In database design, one is interested in the interactions among the attributes of the
relation schemas that make up the database.

Here, we provide a basis for relating the lifespans of attributes. Intuitively,
the lifespan of an attribute for a specific object is all the times when the object has
a value, distinct from⊥i , inapplicable null, for the attribute. Note that lifespans
concern valid time, i.e., are about the times when there exist some valid values.

To more precisely define lifespans, we first define an auxiliary functionvte
that takes as argument a valid-time relationr and returns the valid-time element
defined byvte(r) = {cv | ∃s (s ∈ r ∧ cv ∈ s[T])}. The result valid-time element
is thus the union of all valid timestamps of the tuples in an argument valid-time
relation.

Definition 9 Let a relation schemaR = (S, A1, . . . , An | T) be given, whereS is
surrogate valued, and letr be an instance ofR. The lifespanfor an attributeAi ,
i = 1, . . . , n, with respect to a values of S in r is denotedls(r, Ai, s) and is defined
by ls(r, Ai, s) = vte(σB

S=s∧A6=⊥i (r)). 2

Lifespans are important because attributes are guaranteed to not have any in-
applicable null value during their lifespans.

Inapplicable nulls may occur in a relation schema when two attributes have
different lifespans for the same object/surrogate. To identify this type of situation,
we introduce the notion of lifespan equal attributes.

Definition 10 Let a relation schemaR = (S, A1, . . . , An | T) be given whereS
is surrogate valued. Two attributesAi andAj in R are termedlifespan equalwith

respect to surrogateS, denotedAi
LS=SAj , if for all meaningful instancesr of R,

∀s ∈ dom(S) (ls(r, Ai, s) = ls(r, Aj , s)). 2

Example 8 In schemaCar , all attributes are mutually lifespan equal: values exist
for all attributes when a car is first registered at a branch, and meaningful values
persist for all attributes.

All branches have a manager, but small branches have no assistant manager.
Thus, some branches only get a meaningful value for attributeAssistantMgr
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after having reached a certain capacity. This means thatAssistantMgr is not
lifespan equal to the other attributes, e.g.,Manager andCapacity . 2

The importance of lifespans in temporal databases has been recognized in the
context of data models in the past (cf. [6, 5, 11]). Our use of lifespans for database
design differs from the use of lifespans in database instances. In particular, using
lifespans during database design does not imply any need for storing lifespans in
the database.

3.5 Time Patterns of Individual Time-Varying Attributes

In order to capture how an attribute varies over time, we introduce the concept of a
time pattern. Informally, a time pattern is simply a sequence of times.

Definition 11 Thetime patternT is a partial function from the natural numbersN
to a domainDT of times:T : N ↪→ DT . If T (i) is defined, so isT (j) for all j < i.
We termT (i) thei’th time point. 2

In the context of databases, two distinct types of time patterns are of particular
interest, namely observation patterns and update patterns. Theobservation pattern
Os
A, for an attributeA relative to a particular surrogates, is the times when the

attribute is given a particular value, perhaps as a result of an observation (e.g., if the
attribute is sampled), a prediction, or an estimation. We adopt the convention that
Os
A(0) is the time when it was first meaningful for attributeA to have a value for the

surrogates. Observation patterns concern valid time. The observation pattern may
be expected to be closely related to, but distinct from, the actual (possibly unknown)
pattern of change of the attribute in the modeled reality. Theupdate patternUsA is
the times when the value of the attribute is updated in the database. Thus, update
patterns concern transaction time.

Note that an attribute may not actually change value at a time point because
it may be the case that the existing and new values are the same. The times when
changes take place and the resulting values are orthogonal aspects.

We may use time patterns to capture precisely the synchronism of attributes.
To this end, defineT |t to be the restriction of time patternT to the valid-time
elementt , that is, to include only those times also contained int .

Definition 12 Define relation schemaR = (S, A1, . . . , An|T)whereS is surrogate
valued. Two attributesAi andAj in R, with observation patternsOS

Ai
andOS

Aj
, are

synchronouswith respect toS, denotedAi
S=SAj , if for all meaningful instancesr

of R and for all surrogatess,
OS
Ai
|ls(r,Ai,s)∩ls(r,Aj ,s) = OS

Aj
|ls(r,Ai,s)∩ls(r,Aj ,s) . 2

Thus, attributes are synchronous if their lifespans are identical when restricted to
the intersection of their lifespans.
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Example 9 In schemaCar , attributesBranch , Model , Make, Category , and
Year are synchronous (if ownerships of cars often shift among branches,Branch
would not be considered synchronous with the four other attributes). Each of at-
tributesMileage andLastServiced not synchronous with other attributes in
the schema.Mileage is updated when a car is returned, andLastServiced is
updated when a car is serviced (which occurs less frequently!).

In schemaRentalBooking , values for all attributes are provided when
a booking is made and are not subsequently updated. Thus, all attributes in this
schema are synchronous. 2

3.6 The Values of Individual Time-Varying Attributes

We proceed by considering how attributes may encode information about the ob-
jects they describe. As the encoding of the transaction time of attributes is typically
built into the data model, we consider only valid-time relations.

A relation may record directly when a particular attribute value is valid. Al-
ternatively, what value is true at a certain point in time may be computed from the
recorded values. In either case, the relation is considered a valid-time relation.

Definition 13 A derivation functionf is a partial function from the domains of
valid timesDVT and relation instancesr with schemaR to a value domainD in the
universal set of domainsDD, i.e.,f : DV T × r(R) ↪→ D. 2

Example 10 The Mileage attribute ofCar has associated two derivation func-
tions. One function interpolates recorded mileage values for cars so that a value may
be provided for all times. Among other uses, this function is used to project future
mileage when scheduling maintenance for the cars. The other derivation function
is the discrete derivation function that does not manufacture any information, but
only provides mileage values for the times when they are actually recorded.2

The importance of derivation functions in data models has previously been ar-
gued convincingly by, e.g., Klopprogge and Lockemann [25], Clifford and Crocker
[6] and Segev and Shoshani [35].

3.7 Temporal Support of Attributes

During database design, a model of a part of reality is created. What aspects of the
modeled reality to capture and what to leave out is determined by the functional
requirements to the application being created. The application may require any
combination of valid-time and transaction-time support, or no temporal support, for
each of the time-varying attributes.
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Next, attributes may be either state-based or event-based. Values of state-
based attributes are valid for durations of time while values of event-based attributes
are valid only for instants in time.

Combining these alternatives, there are six possibilities for the temporal sup-
port required for a time-varying attribute.

Valid-time:
no support required

state support required
event support required

×


Transaction-time:
no support required

support required


Example 11 In schemaCustomerAddr , support for neither valid nor transac-
tion time is required. InCustomerRating , valid-time state support is required
for the Rating attribute. In schemaRentalBooking , we require both valid-
time-state and transaction-time support for all attributes. The valid time records
when the booking is for, and old bookings are to be retained. In schemaCar , at-
tribute Mileage requires valid-time-event support and transaction-time support.
The remaining attributes require only transaction-time support. 2

3.8 Temporal Precision of Attributes

Each time-varying attribute has an associated observation pattern, as discussed in
Section 3.5. A time pattern is a function to a time domain, that has an associated
time granularity. The granularity is the precision in which the time-variance is
recorded. If a hiring decision occurred sometime during the business day, but it is
not known exactly when (i.e., what minute or hour) the decision occurred, then it is
inappropriate to store that fact with a timestamp at a minute granularity. The reason
is that a particular minute must be chosen, and that minute is probably incorrect,
with the implication that the model is incorrect [7].

This property of time-varying attributes is important for database design be-
cause temporal relational data models and query languages are frequently based
on the (sometimes implicit) assumption that all time-varying attributes of a rela-
tion may be recorded with the same precision. For example, in tuple timestamped
models, the time-variance of all attribute values is recorded with a single timestamp
attribute (or the same set of timestamp attributes).

One approach is to use the minimum granularity of the DBMS at the precision
of all relations. As just discussed, this results in a low-fidelity model of reality. A
better approach is to choose the most appropriate granularity for each relation. We
propose a simple strategy. First, each attribute is associated with a set of granulari-
ties. The smallest granularity in this set is the granularity in which the time-variance
of the attribute is known. Other, coarser granularities represent granularities which
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are acceptable to the applications utilizing the relation. Then the relation is decom-
posed only if there is not a common granularity that is a member of the granularity
sets of all attributes.

Example 12 In schemaCar , values forMileage must be recorded with a preci-
sion of minutes. The granularity of hours is too coarse because a car may change
its mileage within the same hour, which should be possible to record. Bookings of
rentals must be recorded by the minute or second. Thus, the attributes ofRental-
Booking have minute and second as their acceptable granularities. 2

3.9 Summary of Attribute Semantics

In summary, the database designer is expected to initially annotate the relation
schemas using (regular and strong temporal) dependencies. Then surrogates are
used for the modeling of entity types. The notions of lifespans, time patterns, and
derivation functions are used for capturing the semantics of attributes, and the tem-
poral support and precision of the attributes are recorded.

Below, we summarize the tasks of the database designer. The designer starts
with a set of atemporal conceptual relation schemas in hand. To annotate these
schemas with temporal properties, the indicated tasks are performed.

1. Identify entity types and represent them with surrogate attributes.The real-
world objects (or entities) that the attributes of the database describe are repre-
sented with surrogate attributes. Here, time-invariant keys are also identified.

2. Determine the required temporal support.For each attribute, indicate the
required temporal support for the attribute. Record the interactions (if any)
between the valid time and the transaction time implied by the temporal spe-
cializations in effect for the attribute.

3. Describe precisions.For each time-varying attribute, indicate its set of appli-
cable granularities.

4. Describe lifespans.For each relation schema, describe the lifespans of the
attributes.

5. Determine observation and update patterns.For each relation schema, in-
dicate which attributes are synchronous, i.e., share observation and update
patterns.

6. For each attribute, indicate its appropriate derivation or interpolation func-
tion(s). The functions concern interpolation in valid-time, and there may be
several functions per attribute.

7. Specify temporal functional dependencies on the schemas.This includes the
identification of (primary) keys.

8. Specify strong temporal functional dependencies.
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4 Decomposition Guidelines

In this section, we discuss how the properties of schemas with time-varying at-
tributes as captured in the previous section are used during database design. Em-
phasis is on the use of the properties for schema decomposition. In addition, issues
relevant to the related aspects of view and physical design are touched upon as well.

Database designers are faced with a number of design criteria which are typi-
cally conflicting, making database design a challenging task. So, while we discuss
certain design criteria in isolation, it is understood that there may be additional
criteria that should also be taken into consideration (e.g., good join performance).

Two important goals are to eliminate the use of inapplicable nulls and to avoid
the repetition of information. Additionally, the conceptual model employed poses
constraints on what attributes that may reside in the same relation schema. We
formulate decomposition guidelines that address these concerns.

4.1 Normal Form Decomposition

With the introduction of temporal functional dependencies, it is possible to apply
conventional normalization theory to our conceptual relations. Thus, dependen-
cies are indicated, satisfaction of normal forms is tested, and relation schemas are
decomposed where necessary.

With the introduction of strong temporal functional dependencies and sur-
rogates, it became possible to distinguish between time-varying keys and time-
invariant keys, where the latter may serve the purposes of surrogates.

4.2 Temporal Support and Precision Decomposition Rules

The characterization of attributes according to the temporal support they require is
important for database design because the conceptual data model permits only one
type of temporal support in a single relation (as do also temporal implementation
data models). We embed this requirement in a simple decomposition rule.

Definition 14 (Temporal Support Decomposition Rule.)To achieve the correct
temporal support of time-varying attributes, decompose temporal relation schemas
to have only attributes with the same temporal support requirements in the same
schema, except for the surrogate attribute(s) forming the primary key. 2

Example 13 SchemaCar must be decomposed. Specifically, attributeMileage
is removed from the schema, and a new schema,CarMileage , with attributes
CarID andMileage is introduced. 2

It may be possible to avoid such decomposition in certain circumstances, but
the designer should be aware of the potential drawbacks of doing so. Consider in-
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cluding an attributeS requiring snapshot support together with an attributeT requir-
ing transaction-time support, in a transaction-time relation. Because it is embedded
in a transaction-time relation, it is given transaction-time support, and past values
are automatically retained. Taking the transaction timeslice atnow produces the
correct values forS, but taking a transaction timeslice at a time in the past, at time
ct < now, may retrieve an old value ofS, which is inconsistent with the requirement
that it be a snapshot attribute. Such queries must take this into account, timeslicing
the relation as ofnow to get the value ofS, then join this with the timeslice of the
relation as ofct to get the value ofT , which is quite awkward.

Including the attributeS along with an attributeV requiring valid-time support
is even more problematic. Whereas the system provides the transaction time during
modifications, the user must provide the valid time. This raises the issue of what
should the valid time be for the snapshot attributeS. All updates have to maintain
this semantics, and queries also have to consider the valid time.

Next, the existence of a strict correlation (a type of temporal specialization [18])
between the valid and transaction time of an attribute can reduce the need for de-
composition. Consider an attributeD that requires both valid-time and transaction-
time support, but which is degenerate, i.e., the valid and transaction times are
exactly correlated. Thus whenever a change occurs in the modeled reality, the
new data is immediately recorded in the database. This attribute may reside in
a valid-time relation with another attributeV requiring only valid-time support.
Transaction-time queries can be recast as valid-time queries on the relation, ex-
ploiting the correlation between the two kinds of time. Similarly,D may reside in
a transaction-time relation with the attributeT .

Moving on to precisions, the conceptual data model, and indeed all temporal
relational data models, support only a single precision per relation for each of trans-
action and valid time. It then becomes necessary to separate attributes that require
different, incompatible precisions.

Definition 15 (Precision Decomposition Rule.)To accurately reflect the tempor-
al precisions of time-varying attributes, decompose relation schemas so that all at-
tributes in a schema have a compatible temporal precision, that is, a common gran-
ularity. 2

Example 14 The Precision Decomposition Rule does not give rise to decomposi-
tion in the car rental schema. 2

A more general approach was recently proposed by Wang and his colleagues,
using their temporal functional dependencies based on granularities [44], discussed
briefly in Section 3.2. Their approach is complex and may generate new granulari-
ties, of uncertain comprehensibility by the user. The Precision Decomposition Rule
above is very simple and does not generate new granularities, but may decompose
relations more than Wang’s approach.
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4.3 Lifespan Decomposition Rule

One important design criterion in conventional relational design is to eliminate the
need for inapplicable nulls in tuples of database instances. We introduced in Sec-
tion 3.4 the notion of lifespans in order to capture when attributes are defined for
the objects they are introduced in order to describe. Briefly, the lifespan for an
attribute—with respect to a particular surrogate representing the object described
by the attribute—is all the times when a meaningful attribute value, known or un-
known, exists for the object.

The following definition uses the concepts from Section 3.4 to characterize
temporal database schemas with instances that do not contain inapplicable nulls.

Definition 16 A relation schemaR = (S, A1, . . . , An | T) whereS is surrogate
valued islifespan homogeneousif ∀A,B ∈ R (A LS=SB). 2

With this definition, we are in a position to formulate the Lifespan Decompo-
sition Rule, which ties the connection of the notion of lifespans of attributes with
the occurrence of inapplicable nulls in instances.

Definition 17 (Lifespan Decomposition Rule.)To avoid inapplicable nulls in tem-
poral database instances, decompose temporal relation schemas to ensure lifespan
homogeneity. 2

Example 15 In schemaBranch , attributeAssistantMgr ’s lifespan deviated
from those of the other attributes. Thus,AssistantMgr is removed fromBranch ,
and a new schema,Assistant , with attributesAssistantMgr andBrID is in-
troduced. 2

It is appropriate to briefly consider the interaction of this rule with the the ex-
isting temporal normal forms that also prescribe decomposition of relation schemas.
Specifically, while the decomposition that occurs during normalization does, as a
side effect, aid in eliminating the need for inapplicable nulls, a database schema
that obeys the temporal normal forms may still require inapplicable nulls in its
instances. By adjusting the schema, the lifespan decomposition rule attempts to
eliminate remaining inapplicable nulls.

4.4 Synchronous Decomposition Rule

The synchronous decomposition rule is based on the notion of observation pattern,
and its objective is to eliminate a particular kind of redundancy. In Section 3.5,
we defined the notion of synchronous attributes, which is here employed to define
synchronous schemas and the accompanying decomposition rule. Finally, we view
synchronism in a larger context, by relating it to existing concepts, and discuss the
decomposition rule’s positioning with respect to logical versus physical design.
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With this definition, we can characterize relations that avoid the redundancy
caused by a lack of synchronism and then state the Synchronous Decomposition
Rule.

Definition 18 Define relation schemaR = (S, A1, . . . , An|T)whereS is surrogate
valued. RelationR is synchronousif ∀Ai, Aj ∈ R (Ai S=SAj). 2

Definition 19 (Synchronous Decomposition Rule.)To avoid repetition of attribute
values in temporal relations, decompose relation schemas until they are synchronous.
2

Example 16 In the currentCar schema attributeLastServiced is not syn-
chronous with the remaining attributes. In consequence, thisLastServiced
is removed fromCar and the schemaCarService = (CarID, LastSer-
viced) is included into the car rental database schema. 2

Alternative notions of synchronism have previously been proposed for data-
base design by Navathe and Ahmed [31], and by Wijsen [45]. While these notions
are stated with varying degrees of clarity and precision and are defined in different
data-model contexts, they all seem to capture the same basic idea, namely that of
value-based synchronism, which differs from the synchronism used in this chapter.

It is our contention that in this context, the synchronous decomposition rule
is only relevant at the level of the schema of the implementation platform, and
depending on the actual implementation platform, the rule may be relevant only to
physical database design. Surely, the redundancy that may be detected using the
synchronism concept is important whenstoring temporal relations. Next, this type
of redundancy is of little consequence for the querying of logical-level relations
using the TSQL2 query language [21, 37], a particular implementation platform.
Indeed, it will often adversely affect the ease of formulating queries if logical-level
relations are decomposed solely based on a lack of synchronism.

Finally, the need for synchronism at the logical level has previously been
claimed to make normal forms and dependency theory inapplicable (e.g., [13]).
The argument is that few attributes are synchronous, meaning that relation schemas
must be maximally decomposed, which leaves other normalization concepts irrele-
vant. This claim does not apply to the framework put forth here.

For completeness, it should be mentioned that while the synchronism con-
cepts presented in this section have concerned valid time, similar concepts that con-
cern transaction time and employ update patterns rather than observation patterns
may also be defined.

4.5 Implications for View Design

The only concept from Section 3 not covered so far is derivation functions. These
relate to view design, as outlined next.
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For each time-varying attribute, we have captured a set of one or more deriva-
tion functions that apply to it. It is often the case that exactly one derivation function
applies to an attribute, namely the discrete interpolation function [21], which is a
kind of identity function. However, it may also be the case that several nontrivial
derivation functions apply to a single attribute.

By using the view mechanism, we maintain the separation between recorded
data and data derived via some function. Maintaining this separation makes it pos-
sible to later modify existing interpolation functions.

Thus, the database designer first identifies which sets of derivation functions
that should be applied simultaneously to the attributes of a logical relation instance
and then, subsequently, defines a view for each such set. Although interpolation
functions have previously been studied, we believe they have never before been
associated with the view mechanism.

Example 17 Two derivation functions were associated with attributeMileage of
schemaCarMileage . As the discrete derivation function is the default for event
relations, only one view has to be defined, namely one to produce the interpolated
Mileage values. 2

4.6 Summary

In this section, we have provided a set of guidelines for the decomposition of con-
ceptual relations based on their temporal properties. Here, we briefly review the
proposed guidelines.

• With temporal functional dependencies as the formal basis, conventional nor-
malization theory was made applicable to the conceptual relations consid-
ered here. In particular, the traditional normal forms, e.g., third normal form,
BCNF, and fourth normal form, and their decomposition algorithms are ap-
plicable.

• The temporal support decomposition rule ensures that each relation has a tem-
poral support appropriate for the attributes it contains.

• The precision decomposition rule uses the granularity sets to prescribe decom-
position of relation schemas and to determine the granularity of the resulting
relation schemas.

• The lifespan decomposition rule ensures that inapplicable nulls are not re-
quired.

• The synchronous decomposition rule removes redundant attribute values, while
being less strict than previous definitions of value synchronism.

• Strong temporal functional dependencies, together with the temporal func-
tional dependencies, allow the designer to identify time-invariant primary
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keys, which may play the role of surrogates that can then subsequently be
eliminated.

• The derivation function associated with attributes induce views computing the
derived values.

Example 18 Following the steps described here, the car rental schema in Figure 3
now appears as shown in Figure 4. Sample annotations are included. 2

While conceptual design is concerned with adequately modeling theseman-
tics of the application, physical design is concerned with performance. The con-
cepts concerning synchronism, i.e., time patterns, including observation and update
patterns, are relevant for physical design. Their use was discussed in Section 4.4.
Physical design may also reverse some of the decomposition that is indicated by
logical design.

5 Other Approaches to Temporally Enhanced Database Design

This section surveys in turn approaches to temporally enhanced database design
based on normalization concepts and approaches based on Entity-Relationship (ER)
modeling.

5.1 Normalization-Based Approaches

For relational databases, a mature and well-formalized normalization theory exists,
complete with different types of dependencies, keys, and normal forms. Over the
past two decades, a wealth of temporal relational data models have been proposed.
Because these temporal models utilize new types of relations, the existing normal-
ization theory is not readily applicable, prompting a need to revisit the issues of
database design.

The proposals for temporal normalization concepts, e.g., dependencies, keys,
and normal forms, presented in this chapter are based in part on earlier concepts
(surveyed in [22]). Space constraints preclude a detailed coverage of these earlier
concepts; instead, we briefly survey but a few dependency and normal form con-
cepts.

Some earlier works involving dependencies, e.g., those by Tansel and Gar-
nett [39] and Lorentzos [28], treat nested relations with temporal information and
relations with time interval-valued attributes that are unfoldable into relations with
time point attributes as snapshot relations with explicit temporal attributes and ap-
ply “temporal” dependencies in these contexts. Other dependencies, specifically
Vianu’s dynamic dependency [43], Navathe and Ahmed’s temporal dependency
[31], and Wijsen’s dynamic and temporal functional dependencies [45], are inter-
state dependencies, and thus are more ambitious than the temporal dependency (an
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Branch = (BrID, Name, Location, Manager, Capacity)
• valid-time state and transaction-time support is required
• BrID is a time-invariant key andNameis a key

Assistant = (AssistantMgr, BrID)
• valid-time state and transaction-time support is required
• BrID is a foreign key referencingBrID of Branch

Car = (CarID, Branch, Model, Make, Category, Year)
• transaction-time support is required
• CarID is a time-invariant key

CarMileage = (CarID, Mileage)
• valid-time event and transaction-time support is required
• the precision for valid time is minutes
• CarID is a foreign key referencingCarID of Car

CarMileageView = (CarID, S-C(Mileage))
• view derived fromCarMileage
• S-C is a step-wise constant derivation function

CarService = (CarID, LastServiced)
• transaction-time support is required
• CarID is a foreign key referencingCarID of Car

CustomerAddr = (CuID, Name, Address)
• no temporal support is required
• (CuID, Name) is a key

CustomerRating = (CuID, Rating)
• valid-time state support is required
• CuID is a foreign key referencingCuID of CustomerAddr

RentalBooking = ( RBID, Branch, Category, Customer,
Price, CreditCardNo, CardType)
• valid-time state and transaction-time support required
• the precision for valid time is minutes
• RBID is a time-invariant key
• Branch is a foreign key referencingBrID of schemaBranch
• Customer is a foreign key referencingCuID of CustomerAddr

Figure 4: Final Conceptual Car Rental Schema
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intra-state dependency) considered earlier in this chapter. In fact, these dependen-
cies are more closely related to the notion of synchronism defined in Section 3.5
and based on observation patterns.

Now considering earlier normal forms, quite a diverse set of proposals exist.
Ben-Zvi [2] bases his time normal form on the notion of a contiguous attribute.
Informally, an attribute in a temporal relation is contiguous if there exists a value
of that attribute for each point in time and for each real-world entity captured in the
relation. Segev and Shoshani define, in their Temporal Data Model, a normal form,
1TNF, for valid-time relations [34]. In their data model, it is possible for time-slice
operations to result in attributes that have multiple values at a single point in time.
The 1TNF normal form ensures that this anomaly is avoided. Navathe and Ahmed
[31] base their time normal form (TNF) on their value-based notion of synchronous
attributes and define 1TNF to ensure that time-varying attributes are synchronous,
i.e., change at the same time. This value-based concepts is related to the identity-
based notion of synchronous attributes defined earlier in the chapter. Lorentzos
[28] defines a P normal form and a Q normal form. P normal form essentially
guarantees the relation to be coalesced [36], and Q normal form appears to have
similarities with Navathe and Ahmed’s concept of synchronism.

As illustrated by the dependencies and normal forms surveyed above, the early
proposals for normalization concepts are typically specific to a particular temporal
data model. This specificity is a weakness since a given concept inherits the pecu-
liarities of its data model; it is unsatisfactory to have to define each normalization
concept anew for each of the more than two dozen existing temporal data models
[33]. Furthermore, the existing normal forms often deviate substantially in nature
from conventional normal forms.

This chapter represents an attempt at lifting the definition of temporal normal-
ization concepts from a representation-dependent, model-specific basis to a seman-
tic, conceptual basis, in the process making the concepts readily applicable to an
entire class of temporal relational data models.

Most recently, proposals that are consistent with and refine the approach adopt-
ed in this chapter (and in [21, 22]) have been developed. Specifically, Wang et al.
[44] and Wijsen [46] have defined dependencies and associated normal forms that
extend the normal forms provided here and that are based on temporal granularities
and apply to complex objects. These proposals were discussed in Section 3.2.

5.2 ER-Based Design Approaches

The ER model, using varying notations and with some semantic variations, con-
tinues to enjoy a remarkable popularity in the research community, the computer
science curriculum, and in industry.



934 DATABASE DESIGN

As pointed out earlier, it has been widely recognized that temporal aspects
of database schemas are prevalent and difficult to model. Because this also holds
true when using the ER model, it is not surprising that enabling the ER model to
properly capture time-varying information has been an active area of research for
the past decade and a half. About a dozen temporally enhanced ER models have
resulted. Reference [15] surveys and compares all such models known to its authors
at the time of its writing.

Combined, the temporal ER models represent a rich body of insights into the
temporal aspects of database design. Table 1 provides an overview of the models
and contains references to further readings; the reader is encouraged to study the
models.

Name Main references Based on
Temporal Entity-relationship Model [24, 25] ER
Relationships, Attributes, Keys, and Entities
Model

[12] ER

Model for Objects with Temporal Attributes
and Relationships

[32] ER & OO

Temporal EER model [10, 11] EER
Semantic Temporal EER model [8, 9] ER
Entity-Relation-Time model [41, 42, 29] ER
Temporal ER model [40] ER
Temporal EER model [27] EER
Kraft’s Model [26] ER
TERC+ [47] ERC+
TimeER [16] EER

Table 1: Overview of Temporal ER Models

6 Summary and Directions

In order to exploit the full potential of database technology—conventionalas well as
temporal—guidelines for the design of appropriate database schemas are required.

This chapter has presented concepts for capturing the temporal properties of
attributes. These concepts include temporal and strong temporal functional depen-
dencies and time-invariant keys. Also included are surrogates that represent the
real-world objects described by the attributes, lifespans of attributes, observation
and update patterns for time-varying attributes, and derivation functions that com-
pute new attribute values from stored ones. We subsequently showed the important
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roles these concepts play during database design. We were able to formulate four
additional decomposition guidelines that supplement normal-form-based decompo-
sition.

We feel that several aspects merit further study. An integration of all the
various existing contributions to temporal relational database design into a complete
framework has yet to be attempted. Likewise, a complete design methodology,
including conceptual (implementation-data-model independent) design and logical
design, for temporal databases should be developed. Finally, a next step is to adopt
the concepts provided in this chapter in richer, entity-based (or semantic or object-
based) data models.

Finally, the ideas presented here and the methodology that will follow should
be transitioned to existing implementation platforms, including non-temporal query
languages such as SQL-92 [30]. In the short and perhaps even medium term, it is
unrealistic to assume that applications will be designed using a temporal data model,
implemented using novel temporal query languages, and run on as yet nonexistent
temporal DBMSs.
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