
Time for Statistical Model Checking of real-time

systems ⋆

Alexandre David1, Kim G. Larsen1, Axel Legay2, Marius Mikučionis1,
Zheng Wang3

1 Computer Science, Aalborg University, Denmark
2 INRIA/IRISA, Rennes Cedex, France

3 Shanghai Key Laboratory of Trustworthy Computing,
Software Engineering Institute, East China Normal University, China

Abstract. We propose the first tool for solving complex (some unde-
cidable) problems of timed systems by using Statistical Model Checking
(SMC). The tool monitors several runs of the system, and then relies on
statistical algorithms to get an estimate of the correctness of the entire
design. Contrary to other existing toolsets, ours relies on i) a natural
stochastic semantics for networks of timed systems, ii) an engine capable
to solve problems that are beyond the scope of classical model checkers,
and iii) a friendly user interface.

1 Context

Timed model checking (TMC) is a technique used to prove the absence of bugs
in systems whose behaviors depend on real or discrete time constraints. The
approach has been implemented in several tools [4,2,5] capable of handling case
studies of industrial size. Unfortunately, many applications are still out of scope
of TMC. This is due to the complexity of the timed behaviors, which can even
make the problem undecidable.
In a recent work [8], we presented Constant Slope Timed Automata (CSTA),

that are timed systems in that clocks may have different rates (even potentially
negative) in different locations. Such automata are as expressive as linear hybrid
automata or priced timed automata, but the addition of features such as input
and output modalities allows us to specify complex problems in an elegant man-
ner. Unfortunately most of such problems are either undecidable or too complex
to be solved with classical model checking approaches. In [8], we proposed to es-
timate undecidable problems by using Statistical Model Checking (SMC) [13,9].
SMC consists of monitoring some runs of the system and then uses a statistical
algorithm to obtain an estimate for the system. Such simulation-based tech-
niques were applied in other contexts where they outperformed classical model
checking techniques with an order of magnitude [13,14,1].

⋆ Work partially supported by VKR Centre of Excellence – MT-LAB, an “Action de
Recherche Collaborative” ARC (TP)I, the Foundation for Abroad Studies from East
China Normal University, and NFSC No. 90818024.



To apply SMC on CSTA, we had to define a stochastic semantics on their
behaviors. This was done in a very natural manner by adding distributions on
the delay before a transition is taken. Those distributions are uniform if the
delays are bounded, and exponential otherwise. The semantics then establishes
a race between the components and selects the smallest delay. One of its major
advantages is that the composition of several timed systems remains a pure
stochastic system, not a Markov Decision Process. The latter is needed to apply
SMC4.
In this paper, we report on an implementation of our work within the Up-

paal toolset [2]. One of the major differences with classical Uppaal is the in-
troduction of a new user interface that allows to specify CSTAs with respect
to a stochastic semantics — such semantics is naturally needed to apply SMC.
Another contribution is the implementation of several versions of the sequential
hypothesis testing algorithm of Wald [12]. Contrary to other implementations of
SMC [13,10,7], we also consider those tests that can compare two probabilities
without computing them. Finally, contrary to other SMC-based tools, our tool
comes with a wide range of functionalities that allow the user to visualize the
results in the form of, e.g., probability distributions, evolution of the number of
runs with time bounds, or computation of expected values.

Related work. Related work includes the very rich framework of stochastic timed
systems of MoDeST [3]. Here, however, general hybrid variables are not consid-
ered and parallel composition do not yield fully stochastic models. For the notion
of probabilistic hybrid systems considered in [11] the choice of time is resolved
non-deterministically rather than stochastically as in our case and as required
by SMC.

2 The Toolset

Fig. 1: Branching
edges (from firewire
case-study).

User Interface. Our extension supports the rich modeling
constructs of Uppaal with additions specific to CTSA.
We add a rational expression attached to locations to de-
fine the exponential rates for choosing (unbounded) de-
lays stochastically. We add branching edges and associated
weights for the probabilistic extension as shown in Fig. 1.
We also generalize rates on clocks to be expressions that
take value over integers (even negative) compared to just
0 and 1 for Uppaal.
The verifier shows the estimated intervals of probabili-

ties and provides a plot composer to visualize and compare
different results. Figure 2 shows a screenshot with the ver-
ifier (above) and the plot composer (below). The verifier
provides additional results in a form of plotted data which are accessible via a

4 One could try to use classical heuristics for removing non determinism, but they are
generally not easily applicable to timed systems.

2



popup-menu by right-clicking over the property. Any plot can be exported to a
number of graphical formats and data saved in a textual format.
In addition, a custom plot can be created in plot composer accessible via

Tools menu. On the left side of the plot composer, the data sets are grouped
and displayed in a tree structure. Any data set can be selected for the composite
plot by double clicking on its node and the same way de-selected. The details of
the plot can be customized on the right side above the plot.

Fig. 2: The verifier shows the results of the different probabilistic queries and the
plot composer shows probability distributions.

Simulation-based Engine. Any SMC implementation is divided into three parts.
First, one needs an algorithm capable of generating random runs, in our case
according to our stochastic semantics. Second, those runs have to be monitored
with respect to some property. Finally one needs a statistic algorithm to get
a general confidence on the results. We implement a new engine to generate
such runs that works on states with discrete clock valuations, which makes the
computations cheaper compared to equivalent symbolic operations. The runs
are bounded by either time, cost, or a number of discrete steps. The engine
monitors the generated run with respect to a set of properties that are being
checked. Currently the tool is capable of monitoring some properties written in
cost-constrained temporal logic (“can I reach a from b with a cost less than
5?”), but in the future the monitoring procedure could be generalized. Runs are
stopped when such properties hold. To do this, the algorithm is able to compute

3



the relative upper bound of an invariant from a given state or compute the delay
needed to satisfy a guard or more generally predicates in our properties.
Properties are evaluated on bounded runs by time. In fact time may be

replaced by steps or by a clock, or by a cost constraint. The bound is a constant
value. The expressions expr are state predicates. Our tool can answer of the three
following questions:
– A qualititive check: Pr[time<=bound](<> expr) >= p.
– A quantitative check: Pr[time<=bound](<> expr) ?.
– A comparison check
Pr[time1<=bound1](<> expr1) >= Pr[time2<=bound2](<> expr2).

The first formula is to check if the probability of satisfying some property is at
least p. The second one estimates this probability within an interval. The last
one compares two probabilities without evaluating them and gives the result
for all bounds up to bound1 if both bounds are the same. All these checks rely
on some statistic algorithm to estimate the correctness by observing runs of
the system. The qualitative check is an extension of the sequential hypothesis
testing of Wald, the quantitative checks estimates the probability with a Monte-
Carlo based approach, finally the comparison check is an extension of sequential
hypothesis testing that allows to compare probabilities without computing them.
The algorithms are precise up to a certain value that can be chosen by the user.

3 Case Studies

We present two case-studies to highlight the features of our tool. More can be
found in http://www.cs.aau.dk/˜adavid/smc/, where we handle jobshop schedul-
ing problem and show that our tool performs better than Prism.

3.1 Firewire Protocol

We consider the IEEE 1394 High Performance Serial Bus (“FireWire” for short)
that is used to transport video and audio signals on a network of multimedia

fast
slow
comparison

time

pr
ob

ab
ili

ty

0

0.14

0.28

0.42

0.56

0.70

0.84

0.98

0 300 600 900 1200 1500

Probability comparison

Fig. 3: Probability Comparison

devices. The protocol has two modes, one
fast and one slow mode for the nodes.
The model defines weights to enter these
modes as shown in Fig. 1.
This is a leader election protocol that

we model with two nodes. We compute
the probability for node 1 to become
the root (or leader) within different time
bounds. We use variable s to denote the
state of a node. At initialization, every
node is in the contention state s = 0. Af-
ter a sequence of steps, a node will enter
the root state s = 7 and the other node will enter the child state s = 8. The
query formula is Pr[time <= 1500] (<> node1.s==7 && node2.s==8) ?.

4



We are also interested in checking whether there is a difference between the prob-
ability that a fast node becomes the root or the child and the probability that
a slow node does. We use a probability comparison property for this purpose.
The results in the plot composer of Fig. 2 show that the probability to elect

node 1 as the root increases with the time bound. This probability density dia-
gram shows that in most cases, node 1 may become the root after around 200ms.
Uppaal confirms that the fastest possible to reach this state is 164ms. The re-
sult in Fig. 3 shows that at the beginning the probabilities are indistinguishable,
then the fast node has higher probability to become a root or a child, and at the
end the probabilities become very close again.

3.2 Bluetooth Protocol

Bluetooth is a wireless telecommunication protocol using frequency-hopping to
cope with interference between the devices in the network. A device can be in
a scan state where it replies to a request after two time slots (a slot is 0.3125
ms) and goes to a reply state where it waits for a random amount of time before
coming back to the scan state. When a device stays in the scan state, it can
also enter the sleeping state (2012 time slots) to save energy. We model energy
consumption with a clock (called energy) for which we change the rate depending
on these states.
We check the following properties:
– We evaluate the probability of replying within 70000 time units:
Pr[time<=70000](<> receiver1.Reply) ?

The result is between [0.866977, 0.966977].
– We evaluate the probability of letting time pass 70000 time units with a
limited energy budget:
Pr[energy<=4000] (<> time>=70000) ?

The result is between [0.949153, 1].

In both cases the tool is able to compute a distribution of the probability over
the bound given in argument. Fig. 4(a) shows the cumulative probability of
successfully communicating with time. Fig. 4(b) shows that it costs at least
2, 400 energy units. The plot shows how bluetooth consumes energy.

4 Conclusion
We presented an extension of Uppaal for CSTA. Our tool handles problems
that are out of scope of existing tools for SMC and timed stochastic systems.
We are currently implementing a Bayesian extension of our work following the
theory in [6]. We are also working on an extension that allows to handle nested
probabilistic operators and unbounded cost constraints formulas.

References

1. A. Basu, S. Bensalem, M. Bozga, B. Caillaud, B. Delahaye, and A. Legay. Statis-
tical abstraction and model-checking of large heterogeneous systems. In FORTE,
volume 6117 of LNCS, pages 32–46. Springer, 2010.

5



99% bound
99% bound
cumulative
density

time

pr
ob

ab
ili

ty

0

0.15

0.30

0.45

0.60

0.75

0.90

4E3 3E4 5E4 7E4

Reply Distribution

99% bound 
99% bound 
cumulative 
density 

energy

pr
ob

ab
ili

ty

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0
1.1

2400 2800 3200 3600 4000

Energy Consumption

(a) (b)

Fig. 4: Probability to reply and energy consumption with 99% confidence.

2. G. Behrmann, A. David, and K. G. Larsen. A tutorial on Uppaal. In M. Bernardo
and F. Corradini, editors, SFM, ncs(3185), pages 200–236. Springer, 2004.

3. H. Bohnenkamp, P. D’Argenio, H. Hermanns, and J.-P. Katoen. Modest: A compo-
sitional modeling formalism for real-time and stochastic systems. Technical Report
CTIT 04-46, University of Twente, 2004.

4. M. Bozga, C. Daws, O. Maler, A. Olivero, S. Tripakis, and S. Yovine. Kronos:
A model-checking tool for real-time systems. In Proc. 10th Int. Conference on
Computer Aided Verification (CAV), volume 1427 of Lecture Notes in Computer
Science, pages 546–550. Springer, 1998.

5. T. A. Henzinger, B. Horowitz, R. Majumdar, and H. Wong-Toi. Beyond hytech:
Hybrid systems analysis using interval numerical methods. In Proc. 3rd Int. Work-
shop on Hybrid Systems: Computation and Control (HSCC), volume 1790 of Lec-
ture Notes in Computer Science, pages 130–144. Springer, 2000.

6. S. K. Jha, E. M. Clarke, C. J. Langmead, A. Legay, A. Platzer, and P. Zuliani. A
bayesian approach to model checking biological systems. In CMSB, volume 5688
of LNCS, pages 218–234. Springer, 2009.

7. J.-P. Katoen, I. S. Zapreev, E. M. Hahn, H. Hermanns, and D. N. Jansen. The
ins and outs of the probabilistic model checker MRMC. In Proc. of 6th Int. Con-
ference on the Quantitative Evaluation of Systems (QEST), pages 167–176. IEEE
Computer Society, 2009.

8. D. Poulsen, A. David, K. G. Larsen, A. Legay, M. Mikucionis, J. V. Vliet, and
W. Zheng. Efficient statistical model checking for constant slope timed i/o au-
tomata. Technical report, Aalborg University, 2011. Submitted for publication.

9. K. Sen, M. Viswanathan, and G. Agha. Statistical model checking of black-box
probabilistic systems. In CAV, LNCS 3114, pages 202–215. Springer, 2004.

10. K. Sen, M. Viswanathan, and G. A. Agha. Vesta: A statistical model-checker
and analyzer for probabilistic systems. In QEST, pages 251–252. IEEE Computer
Society, 2005.

11. T. Teige, A. Eggers, and M. Fränzle. Constraint-based analysis of concurrent
probabilistic hybrid systems: An application to networked automation systems.
Nonlinear Analysis: Hybrid Systems, In Press, Corrected Proof:–, 2010.

12. R. Wald. Sequential Analysis. Dove Publisher, 2004.
13. H. L. S. Younes. Verification and Planning for Stochastic Processes with Asyn-
chronous Events. PhD thesis, Carnegie Mellon, 2005.

14. H. L. S. Younes, M. Z. Kwiatkowska, G. Norman, and D. Parker. Numerical vs.
statistical probabilistic model checking. STTT, 8(3):216–228, 2006.

6


